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Abstract: Analyzing and simulating the growth of dynamic cracks in the shell 

of structures and two-dimensional plates is one of the important topics for 

providing solutions to prevent crack growth and sudden failures, which 

increases the lifespan of the structure. Despite many studies by researchers 

regarding the behavior of structures against crack growth and sudden failure, 

there are still many problems regarding the analysis and simulation of the 

mechanical behavior of shells and plates with openings. Therefore, the peri-

dynamic method can be directly used to model crack growth in these types of 

structures. In this research, modeling of dynamic crack growth as well as 

factors affecting crack growth and branching in the shell of structures (with 

and without openings) were investigated using the peri-dynamic method in 

LAMMPS software. Then the results obtained from the pre-dynamic method 

were verified with the results of other methods. The comparison of different 

results showed that the peri-dynamics method is capable of properly modeling 

crack growth in plates and shells with openings, and in other words, this theory 

can predict the path of crack growth with high accuracy. According to the 

obtained results, it can be stated that the process of crack growth and branching 

in the shell of structures depends on values such as the applied stress, the type 

of material and the direction of the fibers in the composites, as well as the 

absence of openings in the shell, which by changing these factors, the speed 

and The path of crack growth in the body of the structure changes. 

Keywords: Crack growth; Peri-dynamic method; Shell structures; Openings; 

LAMMPS. 

1 Introduction 

The prevention of sudden fracture in structures is of significant importance in the industry and 

consequently analyzing and modeling fracture and crack growth in different structures are essential. 

The lifetime of parts can be improved if the path of damage and crack growth is predicted, controlled, 

and directed in a specific way. Many research have been performed in this field. Generally, the theories 

and methods used to analyze the fracture and crack growth in bodies can be divided into two categories. 

The first one has been presented based on the classical theory of solid mechanics called continuous 

medium theory, and the second is based on molecular dynamics theory. Both approaches have their 

advantages and drawbacks. For example, the principle of mathematical formulation in continuous 

medium theory is derived from the partial differential equation and therefore it cannot be used directly 
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to analyze and model points of singularity and discontinuities in the geometry. In this approach, finite 

element methods (FEM) are widely used which specify the initial location of the crack and its growth 

path and therefore make them highly dependent on the type of mesh and its geometry. On the other 

hand, methods and models employed in the molecular dynamic theory also have some issues such as 

small longitudinal and temporal scales. The one problem is the small longitudinal scale applied in the 

molecular dynamic theory compared to actual dimensions of structures and another is very short term 

of the temporal scale used in these models. Therefore, a very high loading rate is used in the molecular 

dynamic simulation which is far from reality. Such restrictions on conventional methods for the analysis 

of damage, failure, and crack growth in structures with points of singularity and discontinuities are the 

driving forces for research and innovation in the field. 

Silling (2000) [1] proposed the formulation called Peri-dynamic (PD) to model discontinuities in 

materials. He discussed the propagation of linear stress waves in the new theory and derived wave 

propagation relations. In this approach, no need to use special mathematical techniques at the points 

where the discontinuities occur to model discontinuities of various types. This theory formulates 

problems in terms of integral equations rather than partial differential equations. The points of 

singularity and discontinuities and damage in bodies and their modeling are another type of deformation 

and part of the structural equation in PD theory. In other words, in PD theory, there is no distinction 

between points in a body that have discontinuous displacement or derivative of displacement. As a 

result, without the need for complementary relationships, PD theory is used directly to model fracture 

and crack growth in problems with bodies and structures having points of singularity and discontinuities. 

PD theory equations are extended with the concept of coherence in a finite distance called the horizon 

line (δ) and are expressed based on a model for internal forces among the particles in the body in which 

the material points (particles) apply force directly on each other on a close distance. While the classical 

theory of solid mechanics is based on the continuous distribution of mass in a body, assuming that all 

internal forces are contact forces exerted by two particles on each other, at a zero distance from each 

other (two adjacent particles). Given the above, the classical theory of solids mechanics can be 

considered a special case of PD theory. When the value of the horizon line (d) is reduced to zero in PD 

theory (δ→0), PD theory converges to the classical theory of solids mechanics. 

In the recent decade, PD theory has attracted the interest of researchers in computational solid 

mechanics to analyze and model fracture, crack growth, and damage in structures under various loading 

and structural conditions [2–4]. Silling and Askari [5] proposed a mesh less method based on PD theory 

to solve numerically dynamic problems. They also discussed the stability and accuracy of PD theory 

and, by studying several examples, revealed the characteristics of this theory in modeling brittle 

dynamic crack growth. Kilic and Madenci [6] considered two sets of problems to study buckling 

characteristics of PD theory. The rectangular columns under compression were utilized to evaluate the 

impact of boundary conditions and the cross-sectional area on buckling load. On the other hand, to 

determine the influence of plate dimension and material properties on the critical buckling temperature, 

a uniform temperature load was exerted on rectangular plates. The implementation of PD theory within 

the framework of molecular dynamics code in AMU software as well as in LAMMPS software [7, 8] 

by Silling et al. was another study in the developing PD theory that added computational mechanics 

capability to MD code.  

Silling et al. [9] developed PD theory and presented a generalization of the bond-based Peri-

dynamic theory. They have divided it into three types of formulations including bond-based Peri-

dynamics, ordinary state-based Peri-dynamics, and non-ordinary state-based Peri-dynamics. In the first 

model, there was linear bonding force employed two material points 𝑥  and 𝑥′ , in addition, the 

magnitude of the force applied on the material point 𝑥′ by the material point 𝑥 and vice versa were 

equal. The second model was ordinary state-based PD theory that the force applied between the two 

material points 𝑥 and 𝑥′ was along the line contacting those two points just like the first model, 

nevertheless, the magnitude of force exerted on each other by two different points was not equal. In the 

third model, in addition to the fact that the force exerted by two points is not equal, the force exerted 

between the two material points 𝑥 and 𝑥′ may also be in any direction.  

Ren et al. [10] introduced a dual-horizon Peri-dynamics (DH-PD) formulation. This concept has 

been presented to study the unbalanced interactions between the particles with different horizon sizes. 
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They indicated that their framework could implement all three Peri-dynamic formulations. Ha and 

Bobaru [11– 13] modeled the crack growth and dynamic brittle fracture using the bond-based PD theory 

to evaluate effective parameters on crack growth in the body. They considered the effect of stress 

intensity and mechanical properties on crack growth process and branching of crack growth path in the 

body. In this study, the results of modeling crack growth by PD theory were in good agreement with 

the experimental results, which shows its ability to analyze and model crack growth and damage in the 

body. 

Agwai et al. [14] compared PD theory with other conventional numerical methods of crack growth 

modeling. However, PD theory showed closer findings to experimental observations with higher 

accuracy in predicting the path of crack growth and fracture in the body. Zhou et al. [15] investigated 

the initiation, propagation, and coalescence of cracks in the Brazilian Disk specimens using the non-

ordinary state-based Peri-dynamics. It was shown that PD theory was able to model crack growth in 

various problems without changing the criterion proving its accuracy. Zhao et al. [16] provided a 

comparison between PD theory and XFEM in crack growth modeling based on the results of two 

examples. In the first example, crack propagation in a double-notched sample was modeled. This 

sample was under uniaxial tensile stress with various cracks. In the second one, samples had two center 

cracks. Both PD and XFEM showed close results. Later, Giannakeas et al. [17] developed a PD–

extended XFEM coupling strategy for brittle fracture simulation. Shafiei [18] studied the crack path for 

inclined crack under dynamic loading. Peri-dynamic solution was presented to show crack generation 

and crack branching. Furthermore, the effect of pre-crack angle and the stress value applied on the 

desired plate on the manner of crack growth was examined. In another work, Sealing and Askari [19], 

evaluated PD theory in fatigue crack propagation modeling. It is revealed that the presented model 

reproduces the main features of S-N data for typical materials. They demonstrated the nucleation and 

growth of a helical fatigue crack in an aluminum alloy sample under torsion through 3D example. 

Basoglu et al. [20] modeled crack growth and examined the effect of small cracks on crack growth 

propagation caused by initial pre-crack in the body. Karpenko et al. [21] applied an ordinary state-based 

Peri-dynamics (SBPD) model to study and analyze the impact of small holes and micro-cracks in 

concrete structures based on toughening and degradation mechanisms. The PD simulation agreed well 

with analytical solutions indicating its capability and efficiency to find the paths of complex crack 

propagation. 

Recently, many other applications of PD theory have been developed including correspondence 

model for creep in metals and solving static problems [22], simulation of crack propagation during the 

SCB testing process [23]; studies and simulation of thermal failure behaviors in bodies under thermal 

stress, thermal cycling treatment, and thermal shock [24–26]; analysis and modeling of progressive 

damage and delamination growth in composite laminates [27–29]; analyzing crack growth and damage 

in hyper elastic materials [30], viscoelastic materials [31], and heterogeneous materials [32]; and 

buckling analysis of cracked plates [33] and dynamic brittle fracture in glass [34]. 

The purpose of the present study is to evaluate the PD theory in modeling crack growth in 

composite, bi-material, and isotropic plates with inclusion. In the first section of the study, a review of 

previous studies and researches conducted by researchers in the field of PD theory is provided. In the 

second section, the basis and formulation of the PD theory are presented. The third section is related to 

numerical examples and modeling of crack growth. And finally, the study is concluded. 

2 Peri-dynamic theory 

Each body and structure in PD theory consists of a large number of material points (particles) that 

each of them has a specific position at a given time. PD theory analyzes the motion and deformation of 

the body, taking into account the interaction between the material point 𝑥(𝑘) and many other possible 

material points (particles) of the body, such as 𝑥(𝑗) (𝑗 = 1,2,3, … , ∞). Therefore, there is an infinite 

number of interactions between material points 𝑥(𝑘) and other material points. In PD theory, it is 

assumed that the field of interaction of the material point 𝑥(𝑘) with other material points is determined 

by the horizon line δ (δ > 0), moreover, all the material points which are at a distance less than the 

horizontal line (δ) from point 𝑥(𝑘) , are called the family or the neighborhood of 𝑥(𝑘)  and are 



Mohammad Norouzi Shavir et al., SUST, 2024, 4(2): 000046 

000046-4 

 

represented by ℋ𝑥(𝑘), and it is also assumed that the effect of material points in the interaction with 

the material point 𝑥(𝑘) disappear in the region beyond the family area of ℋ𝑥(𝑘). The interaction of the 

material point x with another material point 𝑥′ inside the family ℋ𝑥 is represented by the vector𝜉, 

which is called the bond vector. Therefore, there is an infinite number of bonding between the material 

point 𝑥 and the material points within its family. Given the aforementioned issues, the family of the 

material point x is defined using the following relation [4]: 

𝓗𝒙 = {𝒙′𝝐𝑩|𝟎 <|𝒙′ − 𝒙| ≤ 𝜹} (1) 

The equation of motion for a continuous media for use in PD model is presented as follows: 

𝝆(𝒙)�̈�(𝒙, 𝒕) = ∫ 𝒇(𝝃, 𝜼 )𝒅𝒗𝓗𝒙

 

𝓗𝒙 

+ 𝒃(𝒙, 𝒕) (2) 

Where ℋ𝑥 denotes the area in the family and neighborhood x and u is a displacement vector and 

𝑏(𝑥, 𝑡) is a volume force vector. Here, 𝑓 is called the pairwise force function, which represents the 

reciprocal vector between 𝑥 and 𝑥′.  

The concept of the neighborhood of the material point x as well as the concept of the bond vector 

between the two material points is illustrated in Fig.1. 

 

Fig. 1.  Family of material point 𝑥. 

 

𝒚′ = 𝒙′ + 𝒖(𝒙′, 𝒕) 𝒚 = 𝒙 + 𝒖(𝒙, 𝒕), 

𝜼 = = 𝒖(𝒙′, 𝒕) − 𝒖(𝒙, 𝒕) 𝝃 = 𝒙′ − 𝒙, 

Fig. 2.  Schematic description of coordinates and deformation of body in the reference and deformed 

configurations. 

According to Fig. 2, the position of the material point x relative to 𝑥′ is denoted by the vector 𝜉 

and 𝜂 represents the displacement vector of the aforementioned two points relative to each other. 

𝝃 = 𝒙′ − 𝒙 (3) 

𝜼 = 𝒖(𝒙′, 𝒕) − 𝒖(𝒙, 𝒕) (4) 

In relation (4), 𝑢(𝑥, 𝑡) and 𝑢(𝑥′, 𝑡) are the displacement vectors of material points 𝑥 and 𝑥′ 

with respect to the reference configuration (configuration of the body before the deformation), 

respectively, and the vector 𝜉 + 𝜂 represents the relative position vector of the two material points 𝑥 
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and 𝑥′  in the present configuration. One of the basic concepts in PD theory is that, after the 

deformation of the reference configuration, in addition to the deformation of the bond vector between 

the material points, the family of the material point x also changes. The concept of deformation of the 

bond vector and the family of the material point x after the deformation of the reference configuration, 

as well as the vectors 𝑢(𝑥, 𝑡) and 𝑢(𝑥′, 𝑡), which respectively indicate the displacement vectors of the 

material points 𝑥 and 𝑥′, are demonstrated in Fig.2. 

As mentioned earlier, points that are outside the horizon line of the material point x, have no 

bonding with the material point x. In other words, the value of the bonding force (𝑓(𝜂, 𝜉)) between the 

material point x and the material point outside the horizon line (neighborhood) of the material point x 

is zero [4]: 

|𝝃| > 𝜹 → 𝒇(𝜼, 𝝃) = 𝟎,   ∀   𝝃, 𝜼 (5) 

The third law of Newton and the condition for the conservation of the linear and angular 

momentum determines the general form of the pairwise force function (f) among the material points. 

According to this law, the force that the material point x applies to the material point 𝑥′ is equal to and 

in the opposite direction to the force that the material point 𝑥′ exerts on the material point x, therefore 

[4]: 

𝒇(−𝜼, 𝝃) = −𝒇(𝜼, 𝝃),    ∀   𝝃, 𝜼 (6) 

It should be noted that relation (6) satisfies the condition of the conservation of the linear 

momentum on the pairwise force vector (f) between the two material points x and𝑥′. Using the law of 

conservation of the angular momentum: 

(𝝃 + 𝜼) × 𝒇(𝜼, 𝝃) = 𝟎,    ∀  𝝃, 𝜼 (7) 

According to relation (7), it can be stated that the force vector between two material points in PD 

theory is parallel to their relative position vector in the present configuration (after deformation). For 

linear isotropic materials, the pairwise force function in the bond vector between material points is 

defined as follows: 

𝒇(𝜼, 𝝃) = 𝒄𝒔
𝝏|𝝃 + 𝜼|

𝝏𝜼
 (8) 

In relation (8), c is the material micro-module in PD theory, which relies on the type and structure 

of the material, and s is the relative change in the length of the bond vector between the two material 

points in the body defined in the following form: 

𝒔 =
|𝜼 + 𝝃| − |𝝃|

|𝝃|
 (9) 

The coefficient 𝑐, which determines the materials in the PMB model can be presented as follows: 

𝑐 =
18𝑘

𝜋𝛿4
                                 𝑓𝑜𝑟 3𝐷 (10) 

𝑐 =
6𝐸

𝜋𝛿 
3(1 − 𝑣)

                           𝑓𝑜𝑟 2𝐷 (11) 

The values of fracture toughness,𝐺0, for a fractured surface in PD theory is obtained as: 

𝐺03𝐷
= ∫ ∫ ∫ ∫ (

𝑐𝑠0 
2𝜉

2
) 𝑠𝑖𝑛∅𝑑∅𝑑𝜉𝑑𝜃𝑑𝑧 

𝑐𝑜𝑠−1 𝑧/𝜉

0

𝛿

0

2𝜋

0

𝛿

0

=
𝜋 𝑐𝑠0

2𝛿5

10
                  𝑓𝑜𝑟 3𝐷 

(12) 

𝐺02𝐷
= 2𝑡 ∫ ∫  

𝛿

0

∫ (
𝑐𝑠0 

2𝜉

2
)

𝑐𝑜𝑠−1 𝑧/𝜉

0

𝛿

0

𝑠𝑖𝑛∅𝑑∅𝑑𝜉𝑑𝑧

=
𝜋 𝑐𝑠0

2𝑡𝛿4

4
                 𝑓𝑜𝑟 2𝐷 

(13) 
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Therefore, the critical bond tension of 𝑠0 in 2D and 3D is determined as follows: 

𝑠0 = √
10𝐺0

𝜋𝑐𝛿  
5 = √

5𝜋𝐺0

9𝑘𝛿
                      𝑓𝑜𝑟 3𝐷 (14) 

𝑠0 = √
4𝜋𝐺0

9𝐸𝛿
                               𝑓𝑜𝑟 2𝐷 (15) 

Material damage in PD theory is defined by breaking the bond vector between the material points 

and, consequently, the destruction of the interactions between them. During solution and simulation 

process using PD theory, no new bond is created between the material points of the body, and if the 

relative change in the length of the bond vector between the two material points x and 𝑥′ in the body 

exceeds a specified limit, called the critical relative change in the length of the bond vector between the 

material points (𝑠0), the bond between them is broken, and hence, the interaction between the two points 

of material is eliminated and the damage in material occurs. 

Regarding the concept of damage in PD theory and the above-mentioned issues, the pairwise force 

function in the bond vector between material points is defined as relation (16): 

𝒇(𝜼, 𝝃) =
𝝃 + 𝜼

|𝝃 + 𝜼|
𝒄𝒔𝝁(𝒕, |𝝃|) (16) 

In relation (16), 𝜇(𝑡, |𝜉|) is a time-dependent scalar function defined as follows: 

𝝁(𝒕, 𝝃) = {
𝟏,              𝒔(𝒕 , 𝝃) < 𝒔𝟎

𝟎,           𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    
 (17) 

The relationship between the pairwise force in the bond vector between the material points and the 

change in the length of bond vector between them and also the relationship between the damage factor 

(𝜇(𝑡, 𝜉)) between the material points and the length of bond vector changes between them are shown in 

figure (3).Then, we write: 

𝒇(𝜼, 𝝃) = {

𝝃 + 𝜼

|𝝃 + 𝜼|
𝒄𝒔,           𝒔(𝒕 , 𝝃) < 𝒔𝟎

𝟎 ,              𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    

 

 

(18) 

The concept of the local damage and failure for any material point x in PD theory is defined as 

follows: 

𝝋(𝒙, 𝒕) = 𝟏 −
∫ 𝝁 (𝒙, 𝒕, 𝝃)𝒅𝒗𝝃

 

𝓗𝒙

∫ 𝒅𝒗𝝃
 

𝓗𝒙

 (19) 

 
Fig. 3.  Variation of interparticle force with bond stretching factor and damage factor changes with 

maximum bond stretching. 

Since relation (17) changes the value of 𝜇(𝑡, |𝜉|) between 0 and 1, the value of 𝜑(𝑥, 𝑡)  in 

relation (19) varies between 0 and 1. Indeed, the value of 0 for the function 𝜑(𝑥, 𝑡) indicates that the 

all bonds connected to the material point x are intact and the value of 1 indicates that all the bonds 
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connected to the material point x are failed and disappeared. It should be noted that in this study, the 

value of the local damage index (φ) in PD theory was considered 0.38, that is, for crack growth, only 

38% of the bonds between a material point and another point in its neighborhood must be eliminated, 

so that separation occurs in the material with the crack propagation and failure. 

The concept of the local damage in PD theory is shown in Fig 4. 

  

(b): 𝝋 = 𝟏 (a): 𝝋 = 𝟎 

Fig. 4.  Schematic of local damage for material point x. 

3 Numerical scheme of PD theory 

The numerical solution of equation (2) is performed in PD theory using mesh less method. In this 

method, the whole body is first divided into nodal points, each node having a specific volume in the 

reference configuration. The size of the nodes can be non-uniform, for simplicity, the nodes are 

considered to be a cube with the side length Δ𝑥. Indeed, Δ𝑥 is the longitudinal or transverse distance 

of the material points in PD theory. The discrete form of equation (2) in PD theory using the midpoint 

integral rule is as follows [15]: 

𝝆�̈�𝒊 = ∑ 𝒇 (𝒖𝒋 
𝒏 − 𝒖𝒊 

𝒏, 𝒙𝒋 − 𝒙𝒊) 𝑽𝒋 + 𝒃𝒊 
𝒏

 

𝒋

 (20) 

As in relation (20), 𝑢𝑖 
𝑛 = 𝑢(𝑥𝑖 , 𝑡  

𝑛) is the displacement of the i-th node at the time 𝑡  
𝑛, where n 

is the time step number. In addition, in the above relation, 𝑉𝑗 is the volume of the node j. It is worth 

noting that the node size in the two-dimensional and one-dimensional states is surface and length of the 

node, respectively. The left side of equation (20) can be replaced by the explicit central difference 

relation: 

�̈�𝒊 
𝒏 =

𝒖𝒊 
𝒏+𝟏 − 𝟐𝒖𝒊 

𝒏 + 𝒖𝒊 
𝒏−𝟏

𝜟𝒕𝟐
 (21) 

To solve the differential part of equation (21), the Verlet velocity algorithm is used. This algorithm 

is as follows: 

�̇�
(𝒌)

𝒏+
𝟏
𝟐 = �̇�(𝒌)

𝒏 +
𝜟𝒕

𝟐
�̈�(𝒌)

𝒏   

𝒖(𝒌)
𝒏+𝟏 = 𝒖(𝒌)

𝒏

 

 
+ 𝜟𝒕 �̇�(𝒌)

(𝒏+𝟏)/𝟐
 (22) 

�̇�(𝒌)
𝒏+𝟏 = �̇�(𝒌)

(𝒏+𝟏)/𝟐
+

𝜟𝒕

𝟐
�̈�(𝒌)

𝒏+𝟏  

In the above relations, 𝑢, �̇�, and �̈� are respectively the displacement, velocity, and acceleration 

vectors. In fact, using the above relations, the acceleration, velocity, and displacement can be calculated 

for the k-th material point of the object. 

3. 1 Properties of material 

The material studied in this research is Duran glass 50, the mechanical properties of which are 

described in Table 1 

Table 1. Material properties of Duran glass 50 

Density (𝜌) Young’s modulus (𝐸) Poisson ratio (𝑣) Fracture energy (𝐺0) 

2235 kg/m3 65GPa 0.2 204 J/m2 



Mohammad Norouzi Shavir et al., SUST, 2024, 4(2): 000046 

000046-8 

 

3.2 Crack growth in a rectangular plate with a horizontal pre-crack  

In this section, to validate the code written in LAMMPS software to model crack growth using 

bond-based PD theory, dynamic crack growth is modeled on a rectangular plate with a horizontal pre-

crack. In Fig 5, the flowchart related to the PD algorithm is drawn. The length and width of the 

rectangular plate are 100 mm and 40 mm, respectively. The geometry of the rectangular plate is shown 

schematically in Fig 6. According to this figure, the length of the horizontal pre-crack of the rectangular 

plate is a = 50 mm and the upper and lower boundaries of the body are subjected to uniform tensile 

stress of 12 MPa. 

 
Fig. 5.  Flowchart of PD theory. 

 

Fig. 6.  Rectangular plate with a pre-crack. 

In order to discretize the rectangular plate for crack growth analysis using PD theory, the plate is 

divided into square grids with side length ∆x = 0.5 mm. In this study, the values of the horizon line and 

time step for modeling crack growth in the targeted rectangular plate using bond-based PD theory in 

LAMMPS software are considered δ = 4∆x and ∆t = 50, respectively, according to the available 

references. The values of the micro module and critical tension parameters, according to the reference 

[10] for Duran glass50 material, are as follows: 𝑐 = 2.328
1019N

m5 and 𝑠0 = 0.001473. 

    The results of crack growth modeling in the rectangular plate considered in this section are 

presented in Fig 7. The location and time of branching phenomenon in the crack path of the rectangular 

plate are mentioned in Table 2 and in Fig 8, the result of crack growth modeling in this study is 
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compared with the results obtained in other references. According to Table 2 and Fig 8, it is revealed 

that the code written in LAMMPS software to model crack growth using PD theory has high accuracy.  
Table 2. Time and location of branching of the crack paths in the rectangular plate under the uniform stress 

of 12 MPa 

 Branching position Branching time 

this research 19 mm 25𝜇𝑠 

Ref [11] 19 mm 25𝜇𝑠 

Ref [17] 25 mm 28𝜇𝑠 

  

30𝜇𝑠 20𝜇𝑠 

  

50𝜇𝑠 46𝜇𝑠 

 

𝒅𝒂𝒎𝒂𝒈𝒆   

Fig. 7.  Crack propagation path in the rectangular plate with a pre-crack under a uniform stress of 12 

MPa 

  

(b) (a) 

  

(d) present study (c) Phase field method (present study) 

 

𝒅𝒂𝒎𝒂𝒈𝒆   

Fig. 8.  Crack propagation path in the plate with a pre-crack subjected to a uniform stress of 12 MPa, a) 

Shafiei [17], b) Ha [11], c) Phase field method, d) present study. 

3.3 Crack growth in unidirectional composite plate with a hole 
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Here, the crack growth is modeled in a single-layer unidirectional composite plate with a hole. 

Also, in order to investigate the effect of fiber angle on the propagation of crack in the composite plate, 

the crack growth is examined for fiber angles of 0 and 90 degrees. The geometry of the desired plate is 

shown in Fig 9 and the results of this section are displayed in Fig 10. Also, in Table 3, the mechanical 

characteristics of reinforcing fibers are given in two directions of 0 and 90 degrees. 

Table 3. Mechanical properties of unidirectional composite plate 

E11 E12 E22 v12 G0
11 G0

22 ρ 

329 GPa 4.4 GPa 6 GPa 0.346 15.49 kJ/m2 0.168 kJ/m2 1630 kg/m3 

 
Fig. 9.  Geometry of a single-layer unidirectional composite plate with a circular hole.  

  

45𝜇𝑠 35𝜇𝑠 

b: fiber angles of 90° a: fiber angles of 0° 

 

𝒅𝒂𝒎𝒂𝒈𝒆   

Fig. 10.  Crack propagation path in the unidirectional composite plate: a: fiber angles of 0°, b: fiber angles 

of 90°. 

According to the obtained results of this section, it is revealed that the fiber direction in the 

composite plate affects the manner of crack growth in it. 

3.4 Crack growth in a rectangular bimaterial plate with a horizontal pre-crack 

 
Fig. 11. Geometry of rectangular bi-material plate with a horizontal pre-crack under a uniform stress of 6 

MPa. 

Here, the crack growth is modeled in a rectangular bi-material plate with a horizontal pre-crack 

under uniform stress. The geometry of the desired plate is indicated in Fig 11 and the results of this 

section are shown in Fig 12. 

According to the results obtained in this section, it can be stated that the type of material of the 

body will affect the growth of cracks in it. 
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65𝜇𝑠 185𝜇𝑠 

b: bimaterial plate a: isotropic plate 

 

𝒅𝒂𝒎𝒂𝒈𝒆   

Fig. 12.  Crack propagation path in: a: isotropic plate b: bi-material plate with a horizontal pre-crack. 

3.5 Crack growth in a rectangular plate with hole and pre-crack 

Here, the crack growth is modeled in a rectangular plate with a pre-crack and circular hole under 

uniform stress. The geometry of the desired plate is indicated in Fig 13 and the results of this section 

are shown in Fig 14. 

  

a:isotropic plate with a circular hole b:isotropic plate with two circular hole 

Fig. 13.  Geometry of isotropic plate with a horizontal pre-crack and circular hole under a uniform stress 

of 6 MPa. 

According to the obtained results of this section, it is found that the number and location of holes 

in the body affect the crack growth in it. 

  

65𝜇𝑠 185𝜇𝑠 

b: bimaterial plate a: isotropic plate 

 
𝒅𝒂𝒎𝒂𝒈𝒆   

Fig. 14.  Crack propagation path in: a: isotropic plate with a circular hole and pre-crack b: isotropic plate 

with two a circular hole and pre-crack. 
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3.6 Crack growth in a rectangular plate with pre-crack and inclusion  

Here, the crack growth is modeled in a rectangular plate with a pre-crack and inclusion. The 

geometry of the desired plate and the inclusion in the body are shown in Fig 15 and the results of this 

section are shown in Fig 16. 

According to the obtained results of this section, it can be said that the presence of inclusion in the 

body has a significant effect on the manner of crack growth in it. In addition, the number and location 

of inclusions in the body affect the behavior of material and the growth of crack in it. 

  

a:isotropic plate b: bimaterial plate 

Fig. 15. Geometry of isotropic plate with a horizontal pre-crack and inclusion under a uniform stress of 

6MPa. 

  

65𝜇𝑠 185𝜇𝑠 

b: bimaterial plate a:isotropic plate 

 

𝒅𝒂𝒎𝒂𝒈𝒆   

Fig. 16.  Crack propagation path in: a: isotropic plate with a circular inclusion and pre-crack b: isotropic 

plate with two a circular inclusion and pre-crack. 

4 Conclusions 

In this study, dynamic crack growth was analyzed and modeled using the bond-based PD theory 

in LAMMPS software. The effect of some factors, including the applied stress value, type of material, 

fiber direction in composite plates, presence of inclusion, and number and location of holes in the body, 

on the crack initiation and propagation was also studied. In the first problem, the crack growth was 

modeled in a rectangular plate with a pre-crack of constant length under different stresses. According 

to the obtained results, the manner of crack growth in the body is highly dependent on the intensity of 

stress applied on it; as the stress value applied to the body increases, the material shows more brittle 

behavior and the crack grows more rapidly in several branches. In the second problem, the effect of 

fiber direction in composite plate on the crack propagation was investigated. According to the obtained 

results, it was found that the fiber direction has a great effect on the manner of crack growth in it. In the 

third problem, the crack growth was modeled in a bi-material rectangular plate with a horizontal pre-

crack. According to the results of this part and the comparison of them with those of the first part, it 

was revealed that the type of material has a significant effect on the manner of crack growth in the body. 

In the fourth problem, the effects of the hole and inclusion in the body on the crack growth were 
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examined. The results displayed that the number and location of holes and the arrangement of inclusion 

in the body affect the crack growth in it. Also, according to the results of this section, under the same 

conditions, bodies with inclusion and bodies with hole differ greatly in the manner of crack growth and 

the behavior of material. Finally, according to the results of the present study, it is concluded that PD 

theory is able to analyze and predict the crack growth in different structural and loading conditions, 

using the same criteria, without the need for changing them. In addition, according to the obtained 

results, it is also revealed that how the crack propagates and branches in the body depends on the applied 

stress value, type of material, fiber direction in composite plates, and presence of inclusion in the body; 

so, as these factors change, the path, rate, and other parameters of the crack growth in bodies will change. 
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