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Abstract: The paper presents a very powerful method in structural 

engineering, referred to as the method of aggregation, for reducing the weight 

and increasing load capacity of structures. Rigorous results have been stated 

and proved, forming the foundation of the aggregation method for structures 

composed of beams with arbitrarily shaped cross-sections. The essence of this 

method, overlooked in modern stress analysis, lies in consolidating loaded 

elements into a reduced number of elements with larger cross-sections, 

thereby significantly decreasing the material required to support a given total 

load. For instance, in a five-to-one aggregation of cantilever and simply 

supported beams, material usage can be reduced by a factor of 1.71. For 

cantilever and simply supported beams, the reduction in material volume, 

deflection, and stress depends only on the scaling factor of the cross-section 

along the y-axis and is independent of the scaling factor along the x-axis. The 

aggregation method was tested by a case study and finite element experiments 

involving structures built on statically determinate cantilever beams and 

statically indeterminate portal frames. These studies confirmed that 

aggregating elements loaded in bending leads to a drastic increase of the load 

capacity of the structures and a drastic decrease of both the maximum von 

Mises stress and the maximum deflection. 

Keywords: Method of aggregation, light-weight design, load capacity, 

separation in geometry, structural optimization, cantilever beams, simply 
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1 Introduction 

Separation in geometry has been used for a long time in design optimization as a foundational 

technique for reducing weight and enhancing the reliability and load capacity of components. It involves 

redistributing material and refining component shapes while adhering to specific load conditions, 

performance requirements, and constraints. Separation in geometry is a technique that is part of the 

domain-independent method of separation for improving reliability and reducing the risk of failure [1]. 

A common example of increasing the load capacity of components through separation in geometry is 

the tapered profile of a cantilevered beam, where thickness decreases from the fixed end toward the free 

end of the beam. For a given total volume of material, this tapered profile significantly enhances the 

load capacity. Another common example of increasing load capacity through separation in geometry is 

the adaptation in plates subjected to tension, where increasing material thickness around holes mitigates 

stress concentration, reduces peak stress and improves the plate’s fatigue life. 
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Topology optimization, developed as a mainstream design optimization technique for achieving 

lightweight structures, can also be regarded as a special case of the domain-independent approach 

“separation in geometry”. In recent years, topology optimization has been widely applied to generate 

lightweight designs [2-4]. Several methods have been developed, including the evolutionary structural 

optimization method, the density method, and the level set method [2]. 

Advancements in manufacturing technologies, such as additive manufacturing (3D printing) [5,6,7] 

and advanced metal forming [8] helped produce component shapes that are difficult to produce using 

other methods. It also allows the integration of multiple functions into a single component, further 

improving load capacity at the same or reduced weight. 

Aggregation of structural components made from different materials has also been exploited to 

obtain composite beams with superior flexural strength, exceeding the strength of the individual 

components. Examples include glass fiber and carbon fiber composite beams, beams made of steel-

reinforced concrete, and sandwich beams. Sandwich beams, for example, utilize the principle of 

separation of functions in design: strong material located away from the neutral axis resists most of the 

load, while light and low-strength material near the neutral axis provides stability [9-11]. 

Aggregation techniques have been exploited in some structural designs where steel plates are 

aggregated by welding to form reinforced beams [12]. This increases the overall load-carrying capacity 

of the beam by allowing it to handle higher bending moments and shear forces. The structural 

performance of aggregated steel box beams filled with concrete has been investigated in [134].  

In this paper, a different type of aggregation is discussed: the aggregation of identical structural 

components made of the same material into fewer identical structural components with larger cross-

sections, under the same load. 

The method of aggregation presented in this paper works for beams with arbitrary cross-sectional 

shapes, and the reduction in material needed to support the same specified total load is impressive. For 

example, in the case of five-to-one aggregation, the material usage can be reduced by a factor of 1.71. 

This makes the method of aggregation an extremely powerful tool in structural design optimisation for 

reducing weight and increasing load capacity.  

For loaded components with arbitrarily shaped cross-sections, the method of aggregation has not yet 

been discussed with respect to optimizing the load capacity of structures. Multiple loaded elements are 

widely used in engineering and construction but in stress analysis literature, there is a lack of analysis 

regarding the effect of aggregation [10-11,14-18] of these elements, under the same total load. This is 

a striking omission considering the amount of research conducted in stress analysis. 

Discussion related to the aggregation idea is also absent in structural engineering textbooks [19-

21] and papers related to the optimization of loaded beams [22-23]. This critical discussion is also 

missing in the structural reliability literature [24-25]. The lack of discourse on the effects of aggregation 

of components with arbitrary cross sections therefore constitutes a significant knowledge gap, 

highlighting the need for further exploration.  

We need to point out that although the proposed aggregation method is a kind of separation in 

geometry, it is a fundamentally different approach from the standard topology optimization approach 

and is developed without the help of any topology optimization algorithms. Topology optimization 

entails significant computational overhead due to the large number of iterative simulations required. In 

contrast, the proposed aggregation method does not involve any iterative simulations and incurs 

minimal computational overhead. Unlike topology optimization, the proposed method of aggregation 

is not affected by the size of the components composing the structures. Traditional manufacturing 

methods (casting, forging, machining) might not be suitable for intricate topologically optimized 

designs. Furthermore, designs obtained by topology optimization may have stress concentration points 

that cause premature fatigue failure. 

None of these limitations exist for the aggregation method presented in the paper. Considering also 

the drastic weight saving achieved by this method, it is a valuable design optimization in structural 

engineering. 

Bending, or flexural loading, is a very common type of loading. Elements with increased load 

capacity in bending are less likely to experience fatigue failure or premature failure due to overloading 
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or due to sudden application of loads. This results in a longer service life for the structure, reduced 

maintenance costs, and enhanced safety. 

Consequently, through theoretical arguments and computer simulation experiments, the objectives 

of this study are: 

(i) to provide the theoretical foundation of the aggregation method for design optimization of beams 

with arbitrarily shaped cross-sections; 

(ii) to compare the amount of material required to support a specified total load for aggregated and 

non-aggregated structures with arbitrarily shaped cross-sections; 

(iii) to compare the load capacities of aggregated and non-aggregated structures based on the same 

total volume of material; 

(iv) to test the potential of the aggregation method on statically determinate and statically 

indeterminate components with arbitrary cross-sections; 

The results of these studies are the main contributions of this paper and are directly related to 

structural design and reducing the risk of failure of structures loaded in bending. 

2 A theoretical justification of the aggregation method for reducing the weight of structures  

Consider a non-aggregated structure (Fig.1a) composed of n elements and an aggregated structure 

(Fig.1b) composed of a smaller number m of elements (m < n) with larger cross sections. Suppose that 

the cross sections of the aggregated structure are obtained from the cross sections of the non-aggregated 

structure by scaling along the x-axis and y-axis with factors 1xp   and y 1p  . This means that any 

vector 
0

0
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y

 
 
 

 from a non-aggregated cross section is transformed into the vector 
a
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p
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 

 is the scaling matrix defining the linear transformation. Because xp  and yp  

are not necessarily equal, the non-aggregated and aggregated section are not necessarily geometrically 

similar. They will be geometrically similar only if x y p p p  . 

Let the non-aggregated structure be subjected to a total load P and the load per loaded element in 

the non-aggregated structure be P/n (Fig.1a). Similarly, let the aggregated structure be also subjected 

to a total load P and the load per element in the aggregated structure be P/m (Fig.1b). Let the maximum 

tensile stress permitted by the material be cr . The key assumptions in deriving the next theoretical 

results are as follows: 

- The beams cross-sections from the non-aggregated and aggregated structure are with arbitrary shape. 

The cross section of the aggregated structure is obtained through the scaling factors 1xp   and 

y 1p   along the x- and y-axis (see the example in Fig.1c and 1d).  

- For the sake of simplicity in presenting the relevant theory, a uniform cross section is assumed along 

the length of the beam.  

- The material is homogeneous. 

- The loading is uniformly distributed along the separate load-carrying elements. 

These assumptions have been introduced to simplify the theory but do not necessarily limit the 

application of the aggregation method. As a general design approach, the aggregation method remains 

valid even if some of these assumptions are violated. For example, the method still works for structures 

with non-uniform sections along the length of the beam and for loads that are non-uniformly distributed 

along individual load-carrying elements. 
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Let cr  be the maximum permissible tensile stress for the material. To support the same total 

load P without exceeding the critical stress cr , the corresponding total volumes of material for the non-

aggregated and aggregated structure will be denoted by 1V  and 2V , correspondingly. An arbitrary 

cross-section of the non-aggregated beams has been assumed (Fig.1c). The maximum deflections of the 

non-aggregated and aggregated structures at the same total load P, will be denoted by 1  and 2 , 

correspondingly. The length of the elements from the non-aggregated and aggregated structure is equal 

to L.  

 
Fig.1 a) A non-aggregated structure built on n cantilever beams; b) An aggregated structure built on m 

cantilever beams (m<n); c) A beam cross section from the non-aggregated structure; d) A beam cross-section 

from the aggregated structure. 

Theorem 1: 

At the same maximum permissible tensile stress for a non-aggregated structure built on n identical 

cantilever or simply supported beams and an aggregated structure built on m identical cantilever or 

simply supported beams (m<n) with larger cross-sections, the following relationships hold: 

1 2 y/V V p                                        (2) 

1 2 y/ p                                          (3) 

where 1 2,V V  are the volumes of material needed to support a specified total load P, 1 2,   are the 

maximum deflections at the same total load P, and yp  is the scaling factor along the y-axis. 

Proof: 

Because of the scaling factors 𝑝x and 𝑝y, an elementary surface area ds x y    in Fig.1c is 

transformed into the elementary area x y'ds p p x y    in Fig.1d. As a result, between the cross-

sectional area 1S dxdy   of the elements from the non-aggregated structure and the cross-sectional 

area 2 ' 'S dx dy   of the elements from the aggregated structures, the following relationship exists: 

2 1' ' x y x yS dx dy p p dxdy p p S                              (4) 

For a bending moment M acting on a cantilever beam, the maximum tensile stress in the beam is 

determined from the classical formula: 

ˆ /My I                                      (5) 

In equation (5), I denotes the second moment of area of the cross-section and ŷ  denotes the 

largest distance of a point from the cross section from the neutral axis. Because of the scaling factor 𝑝y, 
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between the largest distance 1ŷ  characterizing the non-aggregated cross-section and the largest 

distance 2ŷ  characterizing the aggregated cross-section, the link: 

2ŷ  =
yp 1ŷ                                      (6) 

exists. The loading moment 1M  on a single element of the non-aggregated structure is 

1 ( / )M P n L  while the loading moment 2M  on a single element of the aggregated structure is 

2 ( / )M P m L . Now, following the definition of a second moment of area, let 

2

1I y dxdy                                      (7) 

be the second moment of area of the non-aggregated sections (Fig.1c), where y is the distance of the 

infinitesimally small area ds dxdy  from the neutral axis of the cross section. The second moment 

of area of the cross-section of an aggregated beam (see Fig.1d) is  

2

2 ' ' 'I y dx dy                                      (8) 

where 'y  is the distance of the infinitesimally small area ' ' 'ds dx dy  from the neutral axis of the 

cross-section of the aggregated beam. Because of the proportionality factors 1xp   and 1yp  , for 

the infinitesimally small 'dx  and 'dy , we have: x'dx p dx and y' dy p dy . In addition, we have:

y'y p y . The substitution in (8) then results in:  

3 2 3

2 y x y x 1I p p y dxdy p p I                                 (9) 

As a result, 
3

2 1 y x/I I p p                                     (10) 

of the aggregated and non-aggregated cross-sections. 

For a critical tensile stress cr  and non-aggregated beam, equation (5) gives: 

cr 1 1
ˆ( / ) /P n Ly I                                     (11) 

while for an aggregated beam, equation (5) gives 

cr 2 2
ˆ( / ) /P m Ly I                                     (12) 

Taking the ratio of (11) and (12) results in 

2 1

1 2

ˆ
( / ) 1

ˆ

I y
m n

I y
                                     (13) 

Substituting (6) and (10) in (13) results in 
2

y x( / ) 1m n p p                                    (14) 

from which: 
2

y x/n m p p                                     (15) 

The total volume of the non-aggregated structure is 1 1V nS L  while the total volume of the 

aggregated structure is 2 2V mS L , where 1S  and 2S  are the cross sections of the non-aggregated 

and aggregated beams, correspondingly. Considering (4), we have 

1 1

2 2 x y

1V nS L n

V mS L m p p
                                (16) 

Substituting (15) in (16) finally gives: 

2

x y1
y

2 x y

p pV
p

V p p
                                      (17) 
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This completes the proof of assertion (2) of Theorem 1, which is a new result in stress analysis. 

Equation (17) states that the volume reduction from aggregation depends on the scaling factor 
yp  

along the y-axis and is independent of the scaling factor xp  along the x-axis. This means that if the 

scaling factor along the y-axis is
y 1p  , then 1 2/ 1V V   and although x 1p  , the aggregation into 

fewer load-carrying elements with larger cross sections will not entail any material reduction. 

For n-to-one aggregation (m=1), and
x yp p , from equations (15) and (17), it follows that  

1/31
y

2

V
p n

V
                                     (18) 

Fig. 2 presents the volume of material reduction factors for n=2, 3, 4 and 5. 

 
Fig.2. Material reduction factor for n-to-1 aggregation (n=2, 3, 4 and 5). The aggregated and non-aggregated 

structures carry the same total load P. 

 

As can be seen from Fig.2, the reduction of material needed to support the same specified total 

load is impressive. For five-to-one aggregation, for example, the reduction in material used is 1.71 times! 

From the classical stress analysis theory [12, 15], for the deflection at the free end of the non-

aggregated cantilever beams, the value 

3

1

1

( / )

3

P n L

EI
                                      (19) 

is obtained and for the deflection at the free end of the aggregated cantilever beam, the value 
3

2

2

( / )

3

P m L

EI
                                      (20) 

is obtained, where E is the Young's modulus of the material of the beams. 

Now, from expression (10), for the second moments of area of the aggregated cross-sections, the 

expression  
3

2 1 y x I I p p                                    (21) 

is obtained: 

The ratio of the maximum deflections in the non-aggregated and aggregated structure is obtained 

by dividing equations (19) and (20): 
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3

y x31 1
y x y3 2

2 y x 1 y x

(1/ ) /
( / )

(1/ ) / ( )

p pn I
m n p p p

m p p I p p




                     (22) 

This completes the proof of assertion (3) in Theorem 1. 

Equation (22) means that the reduction in deflection depends on the scaling factor yp  along the 

y-axis and is independent of the scaling factor xp  along the x-axis. This means that if the scaling factor 

along the y-axis is
y 1p  , then 1 2/ 1    and although x 1p  , the aggregation into fewer load-

carrying elements with larger cross sections will not entail any reduction of the maximum deflection. 

The same analysis and the same results (17) and (22) are also obtained for simply supported beams 

and to conserve space, details related to the proof have been omitted. 

A case study on cantilever beams illustrating the theory presented in this section has been presented 

in the Appendix. 

3. Improving the load-bearing capacity at a constant amount of material 

Suppose that the non-aggregated structure in Fig.1a includes n identical beams with arbitrary shape 

of the cross section while the aggregated structure in Fig.1b includes fewer number m of identical beams 

(m < n).  

The beams from the non-aggregated and aggregated structure have cross sections with coefficients 

of proportionality x 1p   and y 1p   between the linear parameters (see the example in Fig.1c and 

1d). The coefficients of proportionality x y,p p , have now been selected such that the total volume of 

the non-aggregated structure is equal to the total volume of the aggregated structure. 

Let t ,1 t ,2,   denote the maximum tensile stress in the non-aggregated and aggregated structure 

correspondingly, while 1 2,   denote the maximum deflections of the non-aggregated and aggregated 

structure. The length of the beams from the non-aggregated and aggregated structure is equal to L and 

the total load for the non-aggregated and aggregated structure is equal to P. 

Theorem 2: 

The following relationships exist between the maximum tensile stresses t ,1 t ,2,   and deflections 

1 2,   of a non-aggregated structure built on n identical beams and an aggregated structure built on m 

identical beams (m < n), (the total volume of material and the total load are the same): 

t ,1 t,2 y/ p                                     (23) 

2

1 2 y/ p                                      (24) 

Proof: 

Because of the scaling factors xp  and yp , an elementary surface area ds x y    in Fig.1c is 

transformed into the area x y'ds p p x y    in Fig.1d. The elementary volume L x y   from the 

non-aggregated structure is transformed into the elementary volume x yLp p x y   from the 

aggregated structure. The total volume of the non-aggregated and aggregated structure must be the same, 

which yields the condition: 

x yn Ldxdy m p p Ldxdy                               (25) 

After cancelling Ldxdy  in (25), a condition is obtained for the scaling factors x y,p p  which 

guarantee the equivalence of volumes of the non-aggregated and aggregated structure: 

                           𝑛/𝑚 = 𝑝x𝑝y                                     (26) 
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Equation (26) shows that for equal total volumes of the aggregated and non-aggregated structure, 

for given n and m, the proportionality factors xp  and 
yp , determining the cross-section of the 

aggregated elements cannot be chosen randomly. They must be selected such that relationship (26) 

holds. 

From the classical bending theory, for the tensile stress at the fixed support of a non-aggregated 

cantilever beam, the value: 

t ,1 1 1
ˆ( / ) /P n Ly I                                     (27) 

is obtained while for the aggregated beam, the value 

t ,2 2 2
ˆ( / ) /P m Ly I                                    (28) 

is obtained, where 1ŷ  and 2ŷ  are the largest distances from the neutral axis for the non-aggregated 

and aggregated cross-section, correspondingly. 

Because of the scaling factor
yp , for the largest distances from the neutral axis 1ŷ  and 2ŷ , the 

relationship 

2ŷ  = yp 1ŷ                                     (29) 

holds. From equation (10), 
3

2 1 y x/I I p p . The ratio of the maximum tensile stresses in the non-

aggregated and aggregated structure can then be obtained by dividing equations (27) and (28): 

3 3

y x y xt,1 1 1
y3 2

t,2 y 1 1 y x y x y

( / )ˆ(1/ ) /

ˆ(1/ ) / ( )

m n p p p pn y I
p

m p y I p p p p p




                  (30) 

For the maximum deflection of the non-aggregated cantilever beams, the value 
3

1

1

( / )

3

P n L

EI
                                     (31) 

is obtained from the standard bending theory [11,17] and for the maximum deflection of the aggregated 

cantilever beam, the value 
3

2

2

( / )

3

P m L

EI
                                   (32) 

is obtained, where E is the Young's modulus of the material of the beams. 

The ratio of the maximum deflections in the non-aggregated and aggregated structure is obtained 

by dividing equations (31) and (32) and taking into consideration equation (26): 

3

x y3 21 1
x y y3

2 1 x y x y

(1/ ) /
( / )

(1/ ) / ( )

p pn I
m n p p p

m I p p p p




                     (33) 

This completes the proof of assertions (23) and (24) of Theorem 2 which are new results in stress 

analysis. Since y 1p  , aggregation under the same total volume of material resulted in a smaller 

maximum tensile stress ( t ,2 t ,1  ) and smaller deflection ( 2 1  ). Another advantage of the 

aggregated structure over the non-aggregated one is the smaller number of connection points (anchors) 

during assembly. The same analysis and the same results (30) and (33) are also obtained for simply 

supported beams and to conserve space, details related to the proof have been omitted. 

Assertions (23) and (24) mean that the reduction in the maximum stress and deflection depends on 

the scaling factor yp  along the y-axis and is independent of the scaling factor xp  along the x-axis. 

This means that if the scaling factor along the y-axis is y 1p  , then t ,1 t ,2/ 1    and 1 2/ 1   , 

and although x 1p  , the aggregation into fewer load-carrying elements with larger cross sections will 

not entail any stress and deflection reduction. 
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A further increase in the load-bearing capacity could be achieved by tapering the cantilevered 

beam. This is a textbook approach to enhancing load-bearing capacity by increasing thickness at the 

fixed end and gradually decreasing it towards the free end. For a given total material volume, this 

tapered shape improves load-bearing efficiency. However, for the sake of simplicity in presenting the 

underlying theory, a uniform cross-section along the beam's length is intentionally chosen to simplify 

the theoretical exposition of the aggregation method. 

This choice in no way diminishes the advantages of the proposed method. As can be verified from 

Fig.2, even with a uniform cross-section, the material savings required to support the same total load 

are very large. For example, with a five-to-one aggregation, material usage is reduced by a factor of 

1.71. 

Aggregation must be applied judiciously, considering structural redundancy and operational 

conditions. For example, if a structure with four supporting elements must remain functional after the 

failure of any element, a 4-to-2 aggregation may be unsuitable. However, by no means does aggregation 

promote structural collapse. In fact, an aggregated structure exhibits significantly increased load-

bearing capacity and a much larger margin of safety than its non-aggregated counterpart.  

A possible implementation challenge of the method of aggregation is the unavailability of standard 

elements with cross-sections with scaling factor yp  along the y-axis greater than 1. It must be pointed 

out that theorems 1 and 2 have been proved for cross sections that are not necessarily geometrically 

similar because x yp p . 

4. Testing the aggregation method using finite element analysis  

The method of aggregation was tested on structures composed of statically determinate 

cantilevered structures and statically indeterminate  -frames. The verification of the aggregation 

method was conducted using steel components made of high carbon steel, heat treated to create a strong 

elastic material with Young's modulus of 200 GPa and a Poisson’s ratio of 0.3. The steel components 

have been subjected to 8-to-2 aggregation. The maximum von Mises stress and the maximum 

deflections have been analyzed using the finite element analysis software Abaqus/CAE 2021.  

4.1 Testing the aggregation method on cantilevered beams 

One of the ends of the statically determinate cantilevered beam is fixed, while the other end is free 

(Fig.3a and 3b). The distance between the fixed support and the end of the beams is L = 100 mm for 

both the non-aggregated (Fig.3a) and aggregated beams (Fig.3b).  

  
Fig.3. Testing the aggregation method on statically 

determinate cantilevered I-beams. 
Fig.4. Cross sections of the (a) non-aggregated and 

(b) aggregated I-beams. All dimensions are in 

millimeters. 
The cross sections of the non-aggregated and aggregated beams are according to Fig.4a and 4b, 

respectively. The dimensions of the cross-sections have been selected such that the total volume of 

material in eight non-aggregated beams (Fig.3a) is exactly equal to the total volume of material in two 

aggregated beams (Fig.3b). 
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The same total load P=360N has been applied to both the aggregated and non-aggregated structure. 

As a result, each beam from the non-aggregated structure in Fig.4a (8 beams) is loaded with a force of 

360/8=45N, distributed uniformly along the top surface of the beam. Each beam of the aggregated 

structure (2 beams) is loaded with a force of 360/2=180N (8×45N = 2×180N=360N), distributed 

uniformly along the top surface of the beam. The global size of the selected hexahedral mesh for the 

non-aggregated beams was 0.0001mm while for the aggregated beams, the mesh size was 0.0002mm. 

The boundary condition of the fixed end was of the type ENCASTRE. 

Table 1 lists the maximum von Mises stress and the maximum deflection characterizing non-

aggregated and aggregated cantilever beams. From the table, it can be concluded that for the same total 

applied load (360 N), the aggregated structure experiences significantly lower maximum von Mises 

stress and maximum deflection compared to the non-aggregated structure. The ratio of the maximum 

von Mises stresses of the non-aggregated and aggregated structures is 350/179 = 1.95, which is close 

to the scaling factor 
y 2p   along the y-axis. The ratio of the deflections of the non-aggregated and 

aggregated structures is 1.92/0.48 = 4, which is equal to the square of the scaling factor along the y-axis
2

y 4p  . These values correlate well with the theoretical predictions regarding the maximum tensile 

stress and maximum deflection for cantilever beams. The deviation of the ratio of stresses from y 2p   

is present because von Mises stresses were calculated in the finite element analysis rather than the 

maximum tensile stress. 

Table 1. Finite element analysis results for the maximum von Mises stress and deflection of non-aggregated and 

aggregated statically determinate cantilever beams. 

 Non-aggregated Aggregated 

Maximum von Mises stress 350 MPa 179 MPa 

Maximum deflection 1.92 mm 0.48 mm 

4.2 Testing the aggregation technique on statically indeterminate  -frames  

Testing of the aggregation technique was also conducted on centrally loaded and side loaded 

statically indeterminate portal frames ( -frames). The aggregation selected for the  -frames was 8 

to 2. Eight centrally loaded frames (Fig.5a) with square cross sections with side 1mm are aggregated 

into two centrally loaded portal frames (Fig.5b) with a square cross-section with side 2 mm). Fig. 5 

shows the dimensions of the  -frames in mm. Because the length of the frames is the same, the same 

total volume of material characterizes both structures. Both structures are also subjected to the same 

total loading force of P=160 N. This means that the load applied on an individual non-aggregated  -

frame is 160/8=20 N, uniformly distributed over the top surface of the non-aggregated frame (Fig.5a). 

 

Fig.5. Eight-to-two aggregation of centrally-loaded portal frames ( -frames). Dimensions are in millimeters. 
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The load applied on an individual aggregated  -frame is 160/2=80N, uniformly distributed over 

the top surface of the aggregated frames in Fig.5b. The Young's modulus of the material for all  -

frames is 200 GPa and the Poisson’s ratio is 0.3. 

The maximum von Mises stresses and deflections of the  -frames were determined by using 

finite element analysis in Abaqus/CAE 2021. The global size of the selected hexahedral mesh was 

0.0001mm for the non-aggregated frames and 0.0002 mm for the aggregated frames. The boundary 

conditions of the fixed ends of the frames were of the type ENCASTRE. 

Table 2 lists the maximum von Mises stresses and deflections. The analysis of the results in Table 

2, for centrally loaded  -frames, shows that aggregated frames experience significantly smaller 

maximum von Mises stresses and deflections compared to non-aggregated frames.  

Table 2. Results for the maximum von Mises stress and maximum deflection for centrally-loaded non-

aggregated and aggregated  -frames. 

 Non-aggregated Aggregated 

Maximum von Mises stress 570.7 MPa 302.3 MPa 

Maximum deflection 3.39 mm 0.8 mm 

The ratio of the maximum von Mises stresses of the non-aggregated and aggregated structures is 

570.7/302.3 = 1.89 while the ratio of the deflections of the non-aggregated and aggregated structures is 

3.39/0.8 = 4.24. Fig. 6 gives a contour plot (exaggerated) of the deflections of the centrally loaded, 

aggregated  -frame. 

 

Fig.6. Deflections of the centrally-loaded, aggregated  -frame obtained by Abaqus/Standard 2021. 

Testing of the aggregation method was also conducted on a side-loaded statically indeterminate 
 -frames. The aggregation selected for the side-loaded  -frames was also 8 to 2. (eight loaded 

frames (Fig.7a) with square cross sections with side 1mm are aggregated into two side-loaded frames 

(Fig.7b) with a square cross-section with side 2 mm). Fig. 7 gives the dimensions of the side loaded 

 -frames (in mm). Both structures were subjected to the same total loading force of 56NP  . The 

load applied on an individual non-aggregated  -frame is 56/8=7 N, uniformly distributed over the 

surface of the vertical section of the non-aggregated frame (Fig.7a). 

The load applied on an individual aggregated  -frame is 56/2=28N, uniformly distributed over 

the right vertical section of the aggregated frame (Fig.7b). The Young's modulus of the material for all 

side-loaded  -frames is 200 GPa and the Poisson’s ratio is 0.3. 

The maximum von Mises stresses and deflections of the side-loaded  -frames were also 

determined by using finite element analysis in Abaqus/CAE 2021. The global size of the hexahedral 

mesh was 0.0001mm for the non-aggregated frames and 0.0002mm for the aggregated frames. The 

boundary conditions of the fixed ends of the frames were of the type ENCASTRE. Fig. 8 gives a contour 

plot (exaggerated) of the deflections of the side-loaded, aggregated  -frame. 
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Fig.7. Eight-to-two aggregation of side-loaded portal frames ( -frames). Dimensions are in millimeters. 

The results related to the maximum von Mises stresses and deflections are listed in Table 3. The 

analysis of the results in Table 3 for side-loaded  -frames shows that the aggregated frames also 

experience significantly smaller von Mises stresses and deflections compared to non-aggregated frames.  

Table 3. Results for the maximum von Mises stress and maximum deflection for side-loaded non-aggregated 

and aggregated  -frames. 

 Non-aggregated Aggregated 

Maximum von Mises stress 634.5 MPa 315.4 MPa 

Maximum deflection  3.94 mm 0.97 mm 

The ratio of the maximum von Mises stresses of the non-aggregated and aggregated frames is 

634.5/315.4 = 2.01 while the ratio of the deflections of the non-aggregated and aggregated frames is 

3.94/0.97 = 4.06. Figure 8 gives a contour plot (exaggerated) of the deflections of the side-loaded  -

frame. 

The simulation studies demonstrated that, similar to statically determinate structures, aggregation 

also had a dramatic effect on the maximum von Mises stress and the maximum deflection of statically 

indeterminate frames. 

 

Fig.8. Deflections of the side-loaded, aggregated  -frame obtained by Abaqus/Standard 2021 
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5. Conclusions 

Aggregating beams with arbitrary cross-sectional shapes into fewer beams with larger cross 

sections leads to a dramatic decrease in the volume of material required to support a specified total load. 

For example, in the case of five-to-one aggregation of cantilever and simply supported beams, the total 

volume of material needed to support the same load is reduced by a factor of 1.71. 

A theorem has been stated and proved that provides the foundation for the aggregation method 

used to reduce the volume of material in structures composed of beams with arbitrary cross sections. 

For a specified total load, the ratio of the minimum necessary volumes of material for the non-

aggregated and aggregated structures is determined by the scaling factor of the aggregated section along 

the y-axis. The ratio of the deflections is also given by this same scaling factor. These results hold 

regardless of the shape of the cross-sectional area of the loaded beams.  

A case study involving I-beams confirmed the key theoretical findings and demonstrated the 

significant impact that aggregation has on the minimum amount of material necessary to carry a 

specified load. 

A theorem has also been proven that provides the foundation for the aggregation method in 

structures under the same total load, containing the same total volume of material. For an equal total 

volume of material, the ratio of the maximum tensile stresses in the non-aggregated and aggregated 

structure is equal to the scaling factor of the aggregated section along the y-axis, while the ratio of the 

maximum deflections is given by the square of this scaling factor. These results hold regardless of the 

shape of the cross sections of the loaded beams. 

The reduction in material volume, deflection, and stress depends solely on the scaling factor of the 

cross section along the y-axis and is independent of the scaling factor along the x-axis. This means that 

if the scaling factor along the y-axis is unity, aggregation into fewer load-carrying elements with larger 

cross sections will not result in any reduction in volume, deflection, or stress. 

The aggregation method was tested through finite element experiments, which confirmed that 

aggregating statically determinate cantilever beams and statically indeterminate frames, under the same 

total load, leads to a drastic decrease in both the maximum von Mises stress and the maximum deflection. 

 

Further Work 

The aggregation method can be further developed by: 

 Developing the method for an inhomogeneous scaling factor yp  along the y-axis. (i.e. 

different parts of the cross-section are scaled by with different factors yp . 

 Testing the aggregation method on complex structural systems and structures composed of 

elements made from different materials. 

 Testing the aggregation method on physical prototypes. 
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Appendix. A case study related to reducing the volume of material for supporting console arms 

with arbitrary shape of the cross-section 

Consider the four steel console arms in Fig.A1a with an arbitrary shape of the cross-section 

according to Fig.A2a and length L=1.5m, supporting a total weight of P=9000N. A conservative 

assumption has been made that the total load of P=9000N is concentrated at the free end of the 

supporting console arms. For the sake of simplicity, it is also assumed that the total load P is distributed 

uniformly across the supporting console arms, and each console arm supports a quarter (P/4) of the total 

load P (see Fig.A1a). 

If the four supporting console arms from Fig.A1a are aggregated into two supporting console arms 

(Fig.A1b), an aggregation 4-to-2 will be made. The aggregated structure in Fig.A1b consists of two 

steel console arms with cross-sectional area according to Fig.A2b and the same length of L=1.5m. The 

aggregated structure carries the same total load of 9000N. Similar to the non-aggregated structure, it is 

assumed that the total weight P is distributed uniformly across the two aggregated console arms, and 

each console arm supports a half of the total weight (P/2; see Fig.A1b). The Young's modulus of the 

material of all I-beams is 200GPa. 

 

Fig. A1. (a) Non-aggregated supporting structure built on four I-beams (b) Aggregated supporting structure built 

on two I-beams. 

 
Figure A2. Cross-sections of the (a) non-aggregated and (b) aggregated supporting elements. Dimensions are in 

millimeters. 

The cross-sections in Fig.A2a and A2b have been assumed to be geometrically similar which 

means that the scaling factors x y,p p  along both axes are equal ( x yp p p  ). To ensure equal 

maximum tensile stress in both non-aggregated and aggregated beams, the scaling factors are 

determined using Equation (15): 

1/3 1/3

x y ( / ) (4 / 2) 1.26p p p n m      

The dimensions of the cross sections of the aggregated console arms are according to Fig.A2b. 

They are proportional to the dimensions of the non-aggregated structure (Fig.A2a) with a 

proportionality factor equal to 1.26. 
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Maximum tensile stress and maximum deflection of the non-aggregated and aggregated 

structures 

The cross-section in Fig.A2a is symmetrical, with a neutral axis denoted by N.A. passing through 

the centroid of the cross section. Applying the parallel-axis theorem gives the following value for the 

second moment of area aI  of the cross section in Fig.A2a: 

 3 2 3 9

a 2 50 8 /12 50 8 28 14 48 /12 760.49 10I            
4m  

For the maximum tensile stress at the fixed support of the console arm, the value: 

3

t,a a 9

a

( / 4) (9000 / 4) 1.5
ˆ 32 10 142

760.49 10

P L
y MPa

I
 




    


 

is obtained, where ˆ
ay  is the largest distance from the neutral axis for the section in Fig.A2a. 

The maximum deflection of the non-aggregated console arms under the action of a concentrated 

force P/4 of magnitude 9000/4 N is calculated using a well-known dependence from the simple bending 

theory: 

3 3

a 9 9

a

( / 4) (9000 / 4) 1.5
0.0166 (16.6 )

3 3 200 10 760.49 10

P L
m mm

EI





  

   
 

Similarly, the second moment of area of the cross section in Fig.A2b, determined by applying the 

parallel axis theorem is: 

 3 2

b

3 4 9 4

2 50 1.26 (8 1.26) /12 50 1.26 8 1.26 (28 1.26)

14 1.26 (48 1.26) /12 (1.26) 1916.8 10a

I

I m

           

     
 

The maximum tensile stress at the fixed support of the aggregated console arm is: 

3

t,b b 9

b

( / 2) (9000 / 2) 1.5
ˆ 32 1.26 10 142

1916.8 10

P L
y MPa

I
 




     


 

while the maximum deflection of the aggregated console arms is: 

3 3

b 9 9

b

( / 2) (9000 / 2) 1.5
0.0132 (13.2 )

3 3 200 10 1916.8 10

P L
m mm

EI





  

   
 

where bŷ  is the largest distance from the neutral axis for the section in Fig.A2b. 

As can be verified from the calculations, after the aggregation, the maximum tensile stress 

remained the same as in the non-aggregated structures, but the maximum deflection has been reduced 

significantly (by a factor of 1.26). At the same time, the total volume of material needed to support a 

total load of 9000N has also been decreased 1.26 times.  

Indeed, for the ratio of the maximum deflections, we have: / 16.6 /13.2 1.26a b    . Next, the 

volume a,1V  of a single non-aggregated console arm, with a cross-section according to Fig.2a, is given 

by 

3 3

a,1 [2 50 8 14 48] 1500 2208 10V mm         

The volume b,1V  of a single aggregated console arm, with a cross-section according to Fig.A2b, 

is given by 
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2

b,1 a,1

3 3

[2 50 1.26 8 1.26 14 1.26 48 1.26] 1500 (1.26)

3505.42 10

V V

mm

          

 
 

For the total volume
a,totalV  of 4 non-aggregated console arms in the structure from Fig.A1a, we have: 

3 3

a,total a,14 8832 10V V mm     

and for the total volume 
b,totalV  of 2 aggregated console arms in the structure from Fig.A1b, the result 

is 

3 3 3

b,total b,12 2 3505.42 10 7010.84 10V V mm        

The ratio of the volumes of material for the non-aggregated and aggregated structures is given by 

3 3

a,total b,total/ 8832 10 / 7010.84 10 1.26V V     . 

These results agree with the predictions from the theory presented in Section 2. The aggregated 

structure has the same maximum permissible stress as the non-aggregated structure but a significantly 

smaller total volume of material and a significantly smaller maximum deflection. 

 


