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Abstract: This study investigates the effect of rice husk ash (RHA) on 

compressive strength of pervious concrete and explores the use of machine 

learning (ML) for forecasting its strength. An inclusive dataset encompassing 

various parameters of pervious concrete with RHA was compiled from 

published research. This data was utilized to develop and assess ML models 

for predicting compressive strength. Six different algorithms, including 

Artificial Neural Network (ANN), Boosted tree regression (BT), K-nearest 

neighbors (KNN), Linear regression (LR), Support Vector Regression (SVR), 

and Extreme Gradient Boosting (XGB), were investigated. The findings 

indicate an optimal RHA content for achieving maximum strength, with 

compressive strength generally increasing to a 10% replacement level and 

then decreasing with further RHA substitution. The analysis showed that the 

SVR model was the most effective and reliable option for prediction. SVR 

model achieved greater performance related to other models, exhibiting a 

higher coefficient of determination and lower values for Root Mean Square 

Error and Mean Absolute Error. The study shows that SVR model can 

accurately identify how different factors in data influence each other. This 

makes it a valuable tool for predicting how strong pervious concrete is with 

RHA under compression. SHAP (SHapley Additive exPlanations) analysis 

showed that aggregate size significantly affects compressive strength, 

followed by water-to-binder ratio and curing period. 

Keywords: Pervious concrete, rice husk ash, machine learning, compressive 

strength 

1 Introduction 

Pervious concrete is a unique concrete formulation engineered to facilitate rapid water drainage. 

Pervious concrete differs from regular concrete in that it contains numerous voids between the 

aggregates, allowing it to absorb water, whereas regular concrete is solid and impermeable [1]. This 

space, called porosity, can be between 15% and 35% of the total volume of pervious concrete [2]. 

Rainwater and other liquids can be transmitted through pervious concrete, reducing stormwater runoff 

and helping replenish groundwater supplies. This is especially useful in urban areas where many paved 

surfaces prevent water from naturally infiltrating into the ground [3]. Due to its ability to manage water 

effectively, pervious concrete is commonly used in various applications, such as driveways, parking 

lots, sidewalks, and recreational areas. It is particularly beneficial in stormwater management systems, 

where it helps mitigate the effects of heavy rainfall and urban heat islands. Additionally, pervious 



Sathiparan et al., SUST, 2025, 5(3): 000080 

000080-2 

 

concrete can be employed in green infrastructure projects, contributing to sustainable urban design 

initiatives that aim to integrate natural processes into the built environment. 

Recent studies have explored mechanical performance of various concrete formulations, 

highlighting the significance of incorporating alternative materials to enhance structural integrity. 

Zhang et al. [4] investigated the performance of basalt fiber-reinforced recycled aggregate concrete 

subjected to high temperatures, highlighting the potential of these materials to enhance durability. 

Similarly, another investigation by Zhang et al. [5] examined the eccentric compression performance 

of basalt fiber-reinforced recycled aggregate in tubular columns, further emphasizing the versatility of 

composite materials in construction applications.  

Pervious concrete inherently uses more cement than traditional concrete due to the absence of fine 

particles that fill gaps. Supplementary cementitious materials (SCMs) partly substitute Portland cement, 

lowering the overall clinker factor (a measure of environmental impact in cement production) [6]. 

Manufacturing of Portland cement is a significant source of CO2 emissions. Using less cement and 

incorporating SCMs, pervious concrete can have a smaller carbon footprint [7]. SCMs like fly ash or 

silica fume can react with hydration products of cement, leading to denser and stronger concrete. This 

is crucial for pervious concrete as it needs adequate strength despite high void content [8].  Some 

SCMs can improve workability of pervious concrete mix, facilitating placement and finishing during 

construction. Certain SCMs like metakaolin can improve resistance of pervious concrete to chemicals 

like acids, enhancing its long-term performance [9]. SCMs can often be cheaper than Portland cement, 

lowering overall material cost of pervious concrete [10]. 

Specific benefits of SCMs in pervious concrete be contingent on the chosen material and its 

properties. Beyond the influence of SCMs, several other aspects affect pervious concrete's properties 

[11]. Mix design plays a critical role, with a lower water-to-cement ratio leading to a stronger and less 

permeable concrete, but also one that's trickier to work with [12]. Nominal and distribution of size of 

coarse aggregates are also critical, as a well-graded mix with minimal fine particles optimizes drainage 

while maintaining strength [13]. Curing with proper moisture management is essential for pervious 

concrete to reach its full potential and prevent cracking. Additionally, admixtures can be used for 

specific purposes, and compaction methods must be tailored to avoid reducing this unique concrete 

type's crucial porosity and drainage capacity [13]. Engineers can achieve optimal pervious concrete for 

various applications by carefully considering all these factors.  

Regular concrete is well-understood, but pervious concrete's high porosity and reliance on a 

specific mix design make it more complex. Traditional methods for predicting strength may only 

partially capture these nuances [14]. Machine learning (ML) analyses large datasets of past pervious 

concrete mixes and their corresponding compressive strengths. This allows it to identify hidden patterns 

and relationships between various mix design factors and resulting strength [15]. ML models can learn 

from large amounts of data, potentially leading to more precise compressive strength forecasts than 

traditional methods based on limited formulas or rules of thumb. As research explores new SCMs or 

other concrete components, ML models can readily adapt to incorporate this new data and improve their 

predictive capabilities [16]. ML can analyse various mix design options and predict their strengths, 

allowing engineers to optimize concrete mixes for specific strength requirements while potentially 

reducing material costs. 

Recent advancements in civil engineering have witnessed a growing interest in leveraging ML 

techniques for estimating performance characteristics of building materials [17-20]. This trend is 

particularly relevant for complex material behaviours, such as the association between RHA 

replacement and strength. Table 1 summarizes existing study on forecasting models for compressive 

strength of SCMs blended pervious concrete, highlighting the application of various ML techniques. 

Sudhir et al. [21] and Ahmad et al. [22] achieved high accuracy (R² approaching 0.99) using ANN for 

compressive strength prediction. However, these investigations were limited by datasets derived from 

a single experimental program. Sathiparan et al. [16, 23] predicted the compressive strength of SCMs 

such as fly ash, metakaolin, and silica fume blended pervious concrete using ML algorithms. Their 

studies collected data from various published literature showing that Extreme Gradient Boosting (XGB) 

performed better than other models. This study recognizes a gap in the current literature regarding 
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developing a specifically tailored ML model for forecasting compressive strength of pervious concrete 

with rice husk ash (RHA). 

Table 1. Overview of the ML models utilized for predicting the compressive strength of SCMs blended 

pervious concrete 

SCMs used Ref Data points MLs used 

Fly ash Sathiparan et al. [23] 437 LR, ANN, BT, SVR, RF 

& XGB 

Fly ash, Silica fume Yu et al. [24] 123 CNN & BPNN 

Ground Granulated 

Blast-furnace Slag 

Sudhir Kumar et al. [21] 18 ANN 

Metakaolin Sathiparan et al. [16] 131 ANN, BT, RF & XGB 

Silica fume Sathiparan et al. [25] 222 LR, ANN, BT, KNN, 

SVR, RF & XGB 

Silica fume Le et al. [26] 164 XGB, RF, SVR, ANN 

Waste glass powder Ahmad et al. [22] 99 LR, NLR, ANN 

RHA is a byproduct of agricultural activities, and utilizing it lessens the need for cement 

production with a high environmental footprint. RHA offers potential advantages over other SCMs like 

fly ash, metakaolin, and silica fumes when used as a cement replacement. Rice husk is a waste product 

from rice production, creating a plentiful and sustainable source of RHA compared to byproducts from 

industrial processes like fly ash [27]. Also, RHA can improve early-age strength of concrete compared 

to some SCMs, like FA, which can see slower strength development initially. This can be beneficial for 

projects requiring faster turnaround times. Research indicates that RHA can enhance the workability of 

fresh mixes, facilitating easier placement and handling during construction [28]. Studies have shown 

that up to a certain percentage (typically around 10-12%) of cement replacement with RHA can improve 

compressive strength [29, 30]. In addition, RHA is generally cheaper than cement and other SCMs that 

can reduce cost of pervious concrete production [29]. As mentioned earlier, the strength of pervious 

concrete depends on various factors; a proper mix design is essential to optimize concrete mixes for 

specific strength requirements.  

Several studies focused on predicting compressive strength of RHA blended concrete. Kashan et al. 

[31] reported that hybrid machine-learning algorithms can accurately predict compressive strength of 

RHA blended concrete. These models significantly outperform traditional methods. Key factors 

influencing strength include cement, curing age, water, and RHA content. The optimal RHA content 

for maximum strength is between 25-175 kg/m³. This research provides valuable insights for optimizing 

RHA blended concrete mix designs and improving construction efficiency and safety. Despite 

increasing use of RHA as a SCM in various concrete formulations, there is notable deficiency of 

research specifically focusing on forecast of compressive strength of RHA-blended pervious concrete. 

Predicting strength using ML algorithms is crucial for several reasons. First, accurate predictions can 

lead to optimized mixed proportion that enhance performance and sustainability, reducing material 

costs and environmental effect. Second, ML techniques can identify complex associations among 

various mix parameters and compressive strength that traditional methods may overlook. This 

predictive capability is mainly vital in the context of sustainable construction practices, where efficiency 

and resource conservation are paramount. In this study, the capability of ML is explored to forecast 

compressive strength of previous concrete, which incorporates RHA as an additional ingredient. The 

data is collected from pervious concrete mixes from various published research sources. Performance 

of six different ML techniques is compared to find the most accurate prediction method. Ultimately, 

models developed in this study offer a new method to improve accuracy of predicting strength of 

pervious concrete containing RHA. This could benefit engineers and construction professionals 

working with this type of material. 

2. Methodology 

2.1 Data collection 
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An inclusive literature exploration used reputable databases like Web of Science, Scopus, and 

Google Scholar. The exploration string encompassed terms related to pervious concrete ("pervious 

concrete", "porous concrete", "permeable concrete") and RHA ("rice husk ash", "RHA"). This strategy 

aimed to identify relevant studies within the title, abstract, and keywords. Following initial search, the 

retrieved literature underwent a thorough screening process to disregard duplicate data. This ensured 

that the data used for further analysis was original and non-redundant. Relevant information for 

constructing ML models was subsequently extracted and summarized in Table 2. In selecting input 

variables for ML models, study focused on parameters that have been widely recognized in existing 

literature as significant predictors for compressive strength. The chosen parameters include: 

 Aggregate-to-binder ratio (Agg/B): This ratio is crucial as it influences the density and 

strength of the concrete mix. 

 Rice husk ash-to-binder ratio (RHA/B): RHA is included because of its pozzolanic 

properties, which enhance strength when used within certain limits. 

 Water-to-binder ratio (W/B): This ratio is vital for determining the workability and 

strength of the concrete, as it directly affects hydration. 

 Mean aggregate size: The size of aggregates impacts the concrete's porosity and 

interlocking characteristics, influencing overall strength. 

 Curing period: Curing conditions are essential for the development of compressive 

strength, as they affect the hydration process. 

These variables were selected based on a review of previous studies that have demonstrated their 

relevance in predicting compressive strength in concrete. This comprehensive approach ensures that the 

model captures multifaceted interactions between different components of concrete mix. The compiled 

dataset encompassed 193 observations, offering a robust foundation for analysis. This comprehensive 

dataset encompassing various features of pervious concrete with RHA is expected to be valuable for 

future research and industrial applications. 

Table 2. Overview of the data composed form published literature 

Ref Agg/B  RHA/B W/B 
Mean 

Agg. Size 

Curing 

period 
CS 

No. of 

data 

Adamu et al. [32] 5.5  0-0.1 0.40 12 3, 7, 28 4.7-7.3 6 

Balasubramani et al. [33] 6, 8, 10 0.03-0.09 0.45 15 7, 28 2.2-9.4 18 

Hesami et al. [34] 4.4 0-0.12 0.27 10.7 28 13.6-17.7 4 

Kim et al. [35] 6.5 0-0.35 0.20 7.5 7, 28 2.0-7.8 16 

Ramadhasyah [36] 2.5 0-0.4 0.34 8.4 
7, 14,28, 

56, 90 
14.7-35.1 25 

Sai Kumar [37] 2.4 0-0.3 0.40 16 7, 28 7.5-10.9 8 

Shafabakhsh and Ahmadi 

[38] 
4.4 0-0.12 0.34 7.5 28 14.5-20.6 7 

Shekhar and Shukla [39] 3.0 0-0.2 0.40 8 7, 14, 28 18.2-38.4 18 

Shwetha [40] 5.6 0-0.3 0.42 12.5 
7, 14, 28, 

56 
5.7-12.2 16 

Subramaniam and 

Sathiparan [6] 
2.5 0-0.2 0.30-0.45 7.5 7, 28 4.4-34.4 40 

Talsania et al. [41] 4 0-0.2 0.30-0.40 15 7, 14, 28 6.4-11.0 27 

Vanathi et al. [42] 6 0-0.3 0.36 14.75 7, 28 4.3-13.9 8 

Overall 2.5-10 0-0.4 0.2-0.45 7.5-16 3-90 2.0-38.4 193 

Experimental studies from which the data was sourced primarily involved mixing RHA with 

pervious concrete in varying proportions. Sample preparation involved thoroughly mixing dry 

ingredients, including cement, aggregates, and RHA, followed by careful addition of water. Most 

studies utilized a 150 mm cube for testing, while a couple of studies employed a 100 mm cube and a 

150 x 300 mm cylindrical specimen. Compressive strength tests were conducted in according to 

established protocols, including ASTM C39 [43], BS-EN-12390 [44], and IS: 516 [45]. Samples were 

subjected to a uniaxial compressive load until failure, with the maximum load recorded to calculate 
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compressive strength. For ML model analysis, we used raw data extracted from reviewed studies. 

Utilizing raw data is justified as it provides a comprehensive and unaltered representation of 

experimental outcomes, ensuring that our model captured inherent variability and characteristics in data. 

This method lets for a more accurate analysis and better generalization of results. 

2.2 Machine learning models 

 

Fig. 1. ML methodology flow chart 

This study employed a accurate ML approach to develop a model for forecasting pervious 

concrete's compressive strength, as demonstrated in Fig. 1. A dataset encompassing 193 data points 

from peer-reviewed literature served as the foundation for the analysis. Six well-established ML 

algorithms were investigated: Linear Regression (LR), Artificial Neural Network (ANN), Boosted Tree 

Regression (BT), Random Forest Regression (RF), Support Vector Regression (SVR), and Extreme 

Gradient Boosting (XGB).  

 LR: Linear Regression is one of the simplest and most widely used statistical methods for 

predictive modeling. It assumes a linear relationship among independent variables (features) and 

dependent variable (target). LR is advantageous due to its interpretability, ease of implementation 

and efficiency in training. It provides a clear understanding of how each feature contributed to 

prediction. Despite its simplicity, LR is effective when association among features and target 

variable is almost linear. It serves as a baseline model in this study, allowing for comparisons 

against more complex algorithms. 

 ANN: It is a powerful modeling technique stimulated by human brain's structure and functioning. 
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Composed of interconnected nodes systematized in layers, it can model complex, nonlinear 

associations between inputs and outputs. They are particularly effective in capturing intricate non-

linear patterns in large datasets. ANNs were selected for their flexibility and capability to learn 

from data without explicit programming of relationships. Their ability to generalize well makes 

them suitable for forecasting compressive strength, where interactions among variables can be 

complex. 

 BT: It is an ensemble ML method that merges several weak learners, usually decision trees, to form 

an accurate predictive model. Each tree is trained to correct errors made by preceding trees. This 

method is advantageous because it effectively reduces bias and variance, leading to improved 

accuracy. BT was selected due to its capability to handle complex nonlinear associations and 

connections among features, which is critical in forecasting compressive strength. 

 KNN: It is a learning algorithm that does not assume any underlying data distribution. It operates 

by comparing instances directly, making it suitable for tasks in both classification and regression. 

It predicts output for a new instance by averaging the outputs of its K nearest neighbors in the 

training dataset. KNN is easier to recognize and instrument, making it a respectable benchmark 

model. It was included in this study for its capability to capture local patterns in the data, especially 

in cases where the association among features and target variable is non-linear. 

 SVR: It extends the principles of Support Vector Machines to handle regression problems. Its 

objective is to identify a hyperplane that optimally represents the data while maximizing the 

distance between the hyperplane and the closest data points. SVR performs well in high-

dimensional environments, especially when the number of dimensions surpasses the number of 

samples. Its robustness to overfitting, especially in high-dimensional spaces, makes it suitable for 

the complexities inherent in predicting compressive strength. 

 XGB: It is a refined approach to gradient boosting that prioritizes efficiency and high performance. 

It incorporates regularization techniques to reduce overfitting and handles missing data effectively. 

XGB is recognized for its high predictive precision and has been widely used in various 

applications, including regression tasks. Its selection in this study is based on its proven 

performance in similar contexts and its ability to model complex interactions within the dataset. 

These algorithms were chosen to deliver a comprehensive comparison of various modeling 

techniques, allowing for the identification of the most operative approaches for predicting compressive 

strength. In present study, the dataset was splitted into training and testing sets using an 80 to 20 ratio. 

This split was chosen to balance the need for a robust training dataset while ensuring adequate data 

remained for reliable performance evaluation. Hyperparameter tuning, employing a grid search 

technique, was implemented to optimize each model's configuration.  

Additionally, five-fold cross-validation was utilized to mitigate overfitting. Model comparisons 

were conducted using various performance metrics, including statistical measures, a Taylor diagram, 

and error distribution analysis. The SHAP analysis was performed on the best-performing model to 

understand relative influence of independent variables on compressive strength. ML analysis utilized 

Python version 3.11.5 and JMP Pro v.17. JMP Pro played a primary role in hyperparameter tuning and 

model training. Python facilitated SHAP analysis. 

2.3 Performance indicators 

The performance of the proposed models was comprehensively evaluated using a differnt statistical 

metrics. These metrics included the R² (coefficient of determination), RMSE (Root Mean Square Error), 

MAE (Mean Absolute Error), SI (Scatter Index), and a20 index (as defined in Eqs. 1-5).  
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In this context, Pi denotes the forecasted strength, Ei indicates the actual strength, 𝑃̅ represents 

the average of the forecasted strength, 𝐸̅ signifies the average of the actual strengths, N is the total 

number of datasets, and N20 refers to instances where the forecasted strength is within 20% error of the 

actual strength. 

Each metric suggestions a unique dimension on model performance, providing a comprehensive 

assessment of how well a model captures underlying data and align with research objectives.  

 R²: It specifies the fraction of variability in the dependent parameter which can be 

anticipated based on the independent parameter. Its values range from 0 to 1, with a value near 1 

suggesting a superior fit of the model with the data. R² is critical for understanding how well a 

model explains variability of compressive strength predictions, allowing for comparisons between 

different models. 

 RMSE: It is the square root of the mean of the squared differences between the forecasted 

and actual values. This metric reflects the extent of deviation of prediction errors from actual values, 

where smaller RMSE indicate improved performance of the model. RMSE is particularly useful in 

assessing accuracy of regression models and provides a clear empathetic of common range of 

prediction errors. 

 MAE: It characterizes the mean of the absolute disparities among forecasted values and 

actual values. Unlike RMSE, which squares the errors, MAE treats all errors equally, making it 

easier to interpret in terms of original scale of data. MAE is beneficial in understanding average 

prediction error and provides an alternative measure of model accuracy that can complement RMSE. 

 SI: It is a normalized measure of prediction accuracy, calculated as the ratio of RMSE to 

the mean of observed values. It offers a unitless metric for assessing model performance, facilitating 

straightforward comparisons across various datasets. SI values can be taken as follows: SI > 0.3: 

Poor e, 0.2 < SI ≤ 0.3: Acceptable, 0.1 < SI ≤ 0.2: Excellent, 0 ≤ SI ≤ 0.1: Great performance. 

 a20 Index: It measures the percentage of forecasted strength that lie within a defined 

range (20%) of the actual strength. This is determined by splitting the count of forecasts within that 

range by the total number of data. This metric is especially valuable for evaluating the real-world 

relevance of models, as it shows how frequently the predictions are reasonably close to the actual 

measurements. 

2.4 Hyperparameter tuning 

In this study, hyperparameter optimization was a critical step to enhance performance of ML 

models. A grid search was employed for hyperparameter tuning, which methodically investigates a 

predefined values of hyperparameter to categorize a combination that produces the best model 

performance. This method assesses all probable combinations of specified hyperparameter values, 

allowing for a comprehensive assessment of their impact. Each ML algorithm has specific 

hyperparameters that influence its performance. For instance, the ANN involved tuning the number of 

layers and number of nodes per layer, while KNN required selecting the optimal number of neighbors 

(k). The BT model was optimized by adjusting number of layers and number of splits per tree, whereas 
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SVR involved tuning the kernel type, cost, and gamma parameters. For XGB, hyperparameters such as 

max depth, subsample, colsample by tree, min child weight, learning rate, and iterations were fine-tuned. 

Performance of each hyperparameter configuration was assessed using R² and RMSE as primary 

metrics, with the aim of maximizing R² and minimizing RMSE. To ensure robust evaluation and 

mitigate overfitting, five-fold cross-validation was applied during optimization process, dividing the 

training dataset into five equally sized folds. This comprehensive approach to hyperparameter 

optimization intended to find the most effective configurations for each ML algorithm, ultimately 

enhancing the forecasting accuracy of the models for compressive strength. 

3. Results and discussion 

3.1 Effect of RHA on compressive strength 

This study investigates the consequence of RHA substitution level on strength. Findings suggest 

an optimal RHA content for achieving maximum strength. Previous research has shown a trend where 

compressive strength generally increases with RHA addition up to a certain point, followed by a 

decrease beyond that point. This phenomenon is evident in Fig. 2(a), where compressive strength 

steadily rises until a 10% RHA replacement level and then declines with further RHA incorporation. 

 

Fig. 2. (a) compressive strength and (b) strength activity index variation with RHA to binder ratio 

Initial strength gain can be attributed to RHA's pozzolanic nature. RHA reacts with calcium 

hydroxide during cement hydration, forming additional cementitious gel that increase concrete strength. 

However, excessive RHA content can introduce higher porosity due to its finer particle size than cement. 
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This increased porosity disrupts the formation of a strong and continuous network within the concrete, 

ultimately reducing compressive strength. 

Fig. 2(b) explores the strength activity index (SAI) changes with increasing RHA/B ratio. SAI is 

a relative measure of the compressive strength between RHA-blended and control pervious concrete. 

Equation (6) expresses the observed trend in the SAI with R2= 0.0971: 

   
2

1 1.4544 / 6.6993 /SAI RHA B RHA B             (6) 

Analysis indicates that maximum strength, on average, is achieved at a 9% RHA replacement level. 

At this optimal level, the ultimate strength achieved is 8% higher than the control pervious concrete. 

This equation's correlation coefficient (R²) is 0.0971, indicating a weak relationship between the RHA/B 

ratio and the SAI. This suggests that other mix parameters likely influence compressive strength of 

RHA blended pervious concrete. 

3.2 Statistical analysis 

 
Fig. 3. Data distribution of independent and dependent variables 

Fig. 3 characterizes the distribution of variables. Statistical analysis was conducted and their values 

are documented within the figures for each variable. These statistics deliver valuable understandings 

into the data distribution. Notably, all parameters except W/B ratio exhibited positive skewness. This 

observation suggests positive skewness in the spreading, with a tail spreading to higher values. 

Significantly positive kurtosis values for Agg/B, W/B, and curing period suggest that these variables 

are leptokurtic. In contrast, a negative kurtosis value for the aggregate size and compressive strength 

suggests that these parameters have shorter tails than a normal distribution. This suggests that there are 

fewer extreme values than typically anticipated in a normal distribution. 

Statistical analysis investigated relationships between selected parameters and compressive 

strength. Results in Fig. 4 indicate that Agg/B, aggregate size, and curing period have higher correlation 

with compressive strength. It's important to note that no correlations were observed between 

independent parameters, except for Agg/B and aggregate size. Curing period exhibited the strongest 

positive correlation (R = 0.46) with strength, followed by the W/B ratio (R = 0.18). Conversely, 

increasing Agg/B ratio (R = -0.62) and aggregate size (R = -0.62) negatively correlated with 

compressive strength. 
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Fig. 4. Correlation between variables 

Size of aggregates significantly influenced compressive strength of pervious concrete. Larger 

aggregates tend to create larger voids within concrete matrix, which can negatively affect overall 

strength by reducing the effective area available for load transfer. Research has shown that smaller 

aggregate sizes can lead to a denser packing of particles, enhancing interlocking and stability of concrete 

structure [14]. In contrast, when larger aggregates are used, increased porosity may result in a weaker 

matrix, as interlocking between particles is compromised [46]. This phenomenon is supported by 

studies indicating that strength reductions with larger aggregate size [47]. Furthermore, it is essential to 

consider aggregate grading; well-graded aggregates can optimize packing density and minimize voids, 

thereby enhancing strength of the concrete [12]. These findings suggest that careful consideration of 

aggregate size and grading is crucial to achieve anticipated compressive strength in pervious concrete. 

3.3 Hyperparameters optimization 

Six comprehensive algorithms were implemented during the ML model training process. A 

detailed account of the hyperparameters utilized in this study is provided in Table 3. A grid search 

method was employed to optimize prediction performance for hyperparameter tuning. While methods 

like random search and Bayesian optimization are also effective, grid search allows for a thorough 

evaluation of specified parameter combinations, ensuring that we capture the intricacies of the model's 

performance across various settings. This approach is particularly beneficial when number of 

hyperparameters is relatively small, as it provides a comprehensive understanding of their impact on 

model accuracy. 

Cross-validation is a critical statistical method for evaluating and assessing the performance of ML 

models. Assessing chosen models' performance is critical. Validation techniques are necessary to 

evaluate a model's data accuracy. Consequently, five-fold validation was adopted to moderate 

overfitting and bolster robustness of ML models. Prior research has extensively documented the 

advantages of employing a 5-fold cross-validation approach, as it demonstrably yields favorable time-

based outcomes [48]. Five-fold cross-validation approach was employed for model evaluation. Dataset 

was divided into five equally sized folds. In each iteration of the five-fold cross-validation, four folds 

were utilized for training the model, and the remaining fold was used for validation. This ensured that 

each fold served as the validation set once. This process mentioned above was meticulously repeated 

five times to guarantee thorough testing. 
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Table 3. Hyperparameters used for the ML models 

Model Hyperparameters Selected value Analyzed Values 

ANN Number of layers 

Nodes per layer 

2 

[8, 8] 

[1, 2] 

[1-10] 

KNN k 2 [1-10] 

BT Number of layers 

Split per tree 

Learning rate 

5 

10 

0.5 

[1-10] 

[1-10] 

[0.01, 0.1, 0.25, 0.5, 1] 

SVR Kernel 

Cost 

Gamma 

Radial basis function 

4.97785 

0.49884 

[linear, Radial basis function] 

[0.01-5] 

[0.001-0.5] 

XGB Max_depth 

Subsample 

Colsample_by tree 

Min_child_weight 

Alpha 

Lambda 

Learning rate 

Iterations 

5 

0.6088 

0.8228 

1.3704 

0.0832 

0.0131 

0.1867 

16 

[1-5] 

[0.5-1] 

[0.5-1] 

[1-3] 

[0-0.5] 

[0-2] 

[0.05-0.2] 

[0-20] 

 

Fig. 5. Performance indicators for k-fold validation 

Outcomes of K-fold cross-validation is showed in Fig. 5. For training dataset, ANN exhibited 

superior R² and smaller RMSE than other ML models. However, the SVR model demonstrated superior 

performance for the validation dataset. Notably, ANN and SVR models achieved R² values surpassing 

0.97 for all training dataset folds. For training dataset, each model displayed a limited range of 

discrepancy in R². Conversely, for validation datasets, only ANN and SVR models exhibited a 

contracted range of variation in R² (discrepancy of maximum and minimum R²), which was 
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approximately 0.07. The XGB model displayed a significant variation in R² for validation datasets. This 

tendency was similarly detected for RMSE values. ANN and SVR models revealed excellent 

performance in training and testing datasets. SVR revealed narrowest range of RMSE values, varying 

between 1.43 MPa to 1.50 MPa for training datasets and 1.19 MPa to 1.76 MPa for validation datasets, 

respectively. The aforementioned findings imply that ANN and SVR models are not susceptible to 

overfitting and more reliable ML models for prediction. 

3.4 Models’ performance 

While a model's performance is evaluated using the dataset compiled, it is essential to note that k-

fold cross-validation techniques were employed to mitigate risk of overfitting. This method divides the 

dataset into multiple subsets, allowing a model to be trained on different combinations of data fractions 

and validated on unseen portions, thus providing a more robust assessment of its accuracy.  

 

Fig. 6. Predicted vs. actual strength for different ML algorithms 
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Fig. 7. Performance index variation for different ML algorithms 

Among the models evaluated (Fig. 6 and Fig. 7), the SVR model demonstrated the most robust 

predictive capabilities. This conclusion is substantiated by the SVR model's significantly higher R² 

related to other models. Furthermore, the SVR model showed notably lower RMSE and MAE, 

demonstrating a high degree of accuracy in aligning estimates with observed data. While the ANN 

model confirmed greater performance on the training dataset, its generalization ability, as evidenced by 

its performance on the testing dataset, was outperformed by the SVR model. Further validation using 

the SI value and a20 index verified the SVR model's accuracy. The SVR model exhibited a lower SI 

value, signifying its effectiveness in minimalizing the discrepancy among predicted and measured 

values. Notably, the SI values for both training and testing datasets (0.11 and 0.12, respectively) 
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highlight the model's consistent performance across known and unseen data. Moreover, the analysis 

revealed that 90% of predicted values for both datasets fell within a 20% error margin of the measured 

values. 

The combined results clearly express the greater performance of the SVR model. Related to other 

models, the SVR model exhibited a higher R² and smaller values for RMSE, MAE and SI. Furthermore, 

a smaller a20 index further supports its strong generalization capabilities. These findings strongly 

suggest that the SVR model effectively captures the intricate relationships and complications inherent 

within the data. This interprets to exceptional forecasting accuracy, crafting it a highly valued tool for 

forecasting applications. The model's accuracy and consistency underscore its significant potential to 

subsidize meaningfully to the field of predictive analytics. 

A comprehensive analysis of ML models reveals that SVR model outperformed other algorithms 

in forecasting compressive strength. Superior performance of SVR can be attributed to its capability to 

efficiently handle high-dimensional data and capture complex, nonlinear relations among input features 

and target variable. By maximizing the margin between predicted values and actual data points, SVR 

minimizes prediction errors and enhances generalization capabilities, making it particularly robust 

against overfitting. In contrast, while ANN model demonstrated strong performance, its complexity can 

lead to overfitting, especially with smaller datasets. ANNs require careful tuning of hyperparameters 

and sufficient training data to achieve optimal results. Although they are highly flexible and capable of 

modeling intricate relationships, their lack of interpretability can be a limitation when attempting to 

understand the underlying factors affecting predictions. 

BT algorithm also showed competitive results, benefiting from its ensemble learning approach that 

combines multiple weak learners. However, it may require significant computational resources and can 

be sensitive to noisy data, which may affect its performance in certain scenarios. Similar to ANN, BT 

models can be prone to overfitting if not properly regularized. KNN offered a simple yet effective 

method for prediction, but its performance is vastly reliant on the select of 'k' and the distance metric 

utilized. While KNN can capture local patterns, it tends to struggle with high-dimensional data due to 

"curse of dimensionality," leading to decreased accuracy as the number of features increases. XGB is 

recognized for predictive power and competence; however, it can be complicated to tune due to 

numerous hyperparameters. XGB excels in handling missing values and modeling complex interactions, 

but its performance may vary significantly with different datasets, necessitating careful validation. 

3.5 Taylor diagram 

 

Fig. 8. Taylor diagram for performance of ML models 
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A Taylor diagram was utilized to evaluate performance of ML models in prediction. Proximity of 

a model's marker to reference point (depicted by a red line in Fig. 8) reflects the agreement between its 

predictions and measured compressive strength values. This agreement is quantified by considering 

fundamental statistical properties such as standard deviation and correlation coefficient. Among 

evaluated models, ANN exhibited the closest correspondence to reference point for the training dataset, 

followed by SVR and XGB models. Conversely, LR model displayed the furthest distance from 

reference point in training and testing datasets, indicating significant deviations between its predictions 

and actual data. Taylor diagram also incorporates a horizontal line representing correlation between 

forecasted and actual strength. The SVR model's proximity to this line indicates a stronger correlation 

compared to the other models. 

3.6 Error distribution 

Fig. 9 shows the error distribution for several ML models employed to forecast compressive 

strength, where error is defined as the discrepancy between forecasted and measured values. The 

illustration offers important perceptions into the predictive capabilities of models. The LR shows a 

considerable presence of outliers, with data points that significantly stray from the average trend. This 

indicates a possible drawback of the LR model in adequately representing the complex relationships in 

the data. In contrast, the ANN model shows the highest level of consistent predictive accuracy among 

the models assessed. This is reflected in a tighter error range, from -3.61 to 5.67 MPa, suggesting a 

smaller gap between the forecasted and actual compressive strength values. 

 

Fig. 9. Error distribution for various ML algorithms (a) training dataset and (b) testing dataset 

ANN, KNN, and SVR model error distributions exhibit positive skewness. This specifies that mean 

error is higher than median error. Besides, all three models have a positive average error, indicating a 

consistent underestimation of compressive strength. In contrast, XGB and BT models display negative 

skewness. While BT model exhibits negative skewness, its average error value remains positive (+0.22 

MPa). This suggests a few higher errors on the negative side, potentially outweighing overall 

distribution towards underestimation. These observations underscore the necessity of utilizing a broad 

array of statistical metrics and visualizations, in addition to mere visual assessment, to thoroughly assess 

the performance of prediction models. This comprehensive approach offers a deeper insight into the 

strengths and weaknesses of each model. 
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Fig. 10 illustrates production errors associated with various ML models across different 

compressive strength ranges. For strengths below 8 MPa, all models tend to overestimate predictions. 

SVR model exhibits a narrow error distribution, followed closely by the XGB model. In strength range 

of 8 to 16 MPa, error distribution is fairly balanced around zero, though several instances show a higher 

positive error. XGB model again demonstrates a narrow error distribution, while SVR model's 

prediction errors are predominantly closer to zero, with a few outliers. For strengths exceeding 16 MPa, 

all ML models tend to underestimate predictions. XGB model continues to show a narrow error 

distribution, followed by ANN and SVR model. 

 

Fig. 10. Error distribution for various ML algorithms and compressive strength range 

3.7 Sensitivity analysis 

SHAP (SHapley Additive exPlanations) is a method utilized in ML to explain individual 

predictions made by a model. SHAP values are a powerful tool for interpreting predictions of ML 

models, providing insights into contribution of each feature to final prediction. By applying cooperative 
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game theory principles, SHAP values assign each feature an importance score based on its marginal 

influence to the prediction, allowing for a clear understanding of how different variables influence a 

model's outputs. In this study, SHAP values were computed for top-performing models, particularly 

focusing on Support Vector Regression (SVR) model [49]. SHAP defines the influence of each 

parameter to the model's prediction in relation to a baseline prediction. This enables understanding of 

how each feature influences the prediction towards the final outcome. SHAP offers various ways to 

visualize these feature contributions, including force, summary, and dependence plots. These 

visualizations help interpret the influence of each parameter on model's output [50]. 

Mean SHAP values provided in Fig. 11 indicate the feature contributions to predicting compressive 

strength of RHA blended pervious concrete. Higher SHAP values represent a more significant impact 

on model's predictions. Aggregate size has the most substantial positive effect (SHAP value = +4.81) 

on compressive strength in this analysis. W/B ratio (+2.25) and Curing Period (+2.19) also have 

significant positive influences. Agg/B ratio (+1.41) and RHA/B ratio (+1.09) also have positive effects 

but to a lesser extent than previous factors. An optimal balance between Agg/B is crucial, and including 

RHA can contribute to strength enhancement, but likely through mechanisms like pore refinement or 

pozzolanic reaction. 

 

Fig. 11. Mean SHAP values for the model 

 
Fig. 12. SHAP summary plot for the model 

SHAP summary plots in Fig. 12 illustrate influences of specific parameter to model's compressive 

strength estimation. Colour gradient along x-axis characterizes the range of values for each parameter. 

Position of a data point on y-axis indicates raw feature value itself. Red dots specify parameter with 

high values associated with robust positive SHAP values. Notably, a substantial positive SHAP score 

of 10 is recorded for lower aggregate size. This finding recommends that within the investigated range, 

smaller aggregates can enhance predicted compressive strength by 10 MPa compared to an average 

value. A negative SHAP value of -10 at the far left of x-axis specifies that larger aggregates may reduce 

predicted compressive strength by 10 MPa comparative to average. Pervious concrete relies on 

interlocking of aggregate particles for strength. Larger aggregates leave bigger voids between them, 

hindering this interlocking effect and leading to a weaker matrix. Also, larger aggregates contribute to 
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a higher overall void content in the concrete mix [46]. This porosity reduces effective load-bearing area, 

translating to lower compressive strength. During compression testing, larger aggregates are more prone 

to crushing under pressure within the porous structure, compromising the concrete's strength. 

This study establishes a positive correlation among curing time and compressive strength as a 

higher W/B ratio and a more extended curing period positively influence compressive strength. 

Extended curing periods enhance compressive strength due to facilitation of cement hydration. 

Hydration is a chemical reaction between water and cement, forming hydration products that contribute 

to strength. A longer curing duration allows a more complete hydration process, ultimately leading to a 

higher compressive strength [51]. It is shown that lower Agg/B ratio positively affects compressive 

strength. Agg/B directly influences the mortar matrix's density and particle packing. A higher ratio 

signifies a reduction in cementitious material available to bind aggregate particles, consequently 

hindering compressive strength development. While the impact of RHA on compressive strength is less 

pronounced compared to other parameters, it still exerts a significant influence. In general, mortars 

formulated with higher RHA/B ratios exhibit lower compressive strength. 

3.8 Comparison with past studies 

Table 4. Overview of the ML model for estimating compressive strength of SCMs-enhanced pervious concrete 

Ref SCMs 

used 1 

Impendent 

variable 2 

Data 

points 

MLs 

used 

R2 

(Train) 

RMSE 

(Train) 

R2  

(Test) 

RMSE 

(Test) 

Best 

model 

Yu et al. 

[24] 

Fly ash, 

Silica 

fume 

C.C, C.Agg, 

F.Agg, W, 

SCM, Admix 

123 CNN 

BPNN 

0.94 

 

2.72 

4.07 

0.94 3.00 

3.31 

CNN 

Sathiparan 

et al. [23] 

Fly ash Agg/B, W/B, 

SCM/B, 

Agg.S, t 

437 ANN 

BT 

LR 

RF 

SVR 

XGB 

0.82 

0.96 

0.40 

0.92 

0.71 

0.99 

4.21 

2.07 

7.67 

2.89 

5.13 

0.86 

0.82 

0.92 

0.42 

0.89 

0.71 

0.95 

4.58 

3.09 

8.31 

3.57 

5.73 

2.53 

XGB 

Sathiparan 

et al. [25] 

Silica 

fume 

C.C, SCM, 

C.Agg, 

F.Agg, W, 

Admix, 

Agg.S, t 

222 ANN 

BT 

KNN 

LR 

RF 

SVR 

XGB 

0.95 

0.93 

0.85 

0.44 

0.95 

0.91 

1.00 

2.71 

3.20 

4.74 

9.17 

2.86 

3.63 

0.28 

0.94 

0.87 

0.86 

0.42 

0.90 

0.85 

0..97 

3.05 

4.32 

4.59 

9.30 

3.87 

4.72 

2.21 

XGB 

Sudhir 

Kumar et 

al. [21] 

GGBS C.C, SCM, 

Agg.S, 

Porosity 

18 ANN 0.99 0.12 0.99 0.14 ANN 

Ahmad et 

al. [22] 

Waste 

glass 

powder 

C.C, SCM, 

W/B, C.Agg, t 

99 LR 

NLR 

ANN 

0.77 

0.82 

0.99 

2.72 

2.39 

0.53 

0.79 

0.89 

0.99 

2.72 

1.37 

0.49 

ANN 

Sathiparan 

et al. [16] 

Metakaolin Agg/B, W/B, 

SCM/B, 

Agg.S, t 

131 ANN 

BT 

RF 

XGB 

0.96 

0.97 

0.99 

0.98 

1.49 

0.86 

0.18 

0.19 

0.96 

0.97 

0.95 

0.96 

2.05 

1.85 

2.13 

1.95 

XGB 

Le et al. 

[26] 

Silica 

fume 

Agg/B, 

SCM/B, W/B, 

F.Agg, Agg.S 

164 XGB 

RF 

SVR 

ANN 

0.98 

0.97 

0.97 

0.93 

1.44 

1.58 

3.75 

2.56 

0.92 

0.90 

0.89 

0.88 

3.38 

3.61 

3.72 

3.81 

XGB 

Present 

study 

RHA Agg/B, W/B,  

SCM/B, 

Agg.S, t 

193 ANN 

BT 

KNN 

LR 

SVR 

XGB 

0.98 

0.95 

0.95 

0.69 

0.97 

0.96 

1.19 

1.93 

1.90 

4.89 

1.47 

1.65 

0.94 

0.93 

0.94 

0.71 

0.97 

0.95 

2.06 

2.27 

2.09 

4.57 

1.57 

1.96 

SVR 

1 GGBS: Ground Granulated Blast-furnace Slag 
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2 Agg/B: Aggregate to binder ratio, Admix: Admixture content (in kg/m3), C.C: Cement content 

(in kg/m3), C.Agg: Coarse aggregate content (in kg/m3), F.Agg: Fine aggregate content (in kg/m3), SCM: 

Supplementary cement material content (in kg/m3), SCM/B: Supplementary cement material content to 

binder ratio, W/B: Water to binder ratio, Agg.S: Mean coarse aggregate size (mm), t : Curing period 

(days) 

Reviewing existing research summarized in Table 4, we can see a focus on mixed design 

parameters as input variables for ML models predicting compressive strength of pervious concrete 

blended with SCMs. These studies commonly used input variables include: 

 Mix Proportions: Agg/B ratio (or cement and aggregate content), SCM-to-binder ratio 

(or SCM content), and W/B ratio (or water content). 

 Material Properties: Aggregate size. 

 Curing Conditions: Curing period. 

Several studies highlight the effectiveness of specific models. Sathiparan et al. [16, 23, 25] and Le 

et al. [26] demonstrate the high accuracy of XGB models for predicting compressive strength.  Kumar 

et al. [21] and Ahmad et al. [22] advocate for ANN, but their evaluations lack a comparison with other 

machine-learning approaches. This current research demonstrates comparable accuracy of SVR, ANN, 

and XGB models. However, limited datasets are a fundamental limitation identified across existing 

studies. Future research efforts should prioritize the expansion of datasets to enhance model 

performance and generalizability further. 

This study builds upon existing research on pervious concrete by specifically investigating effect 

of RHA on compressive strength and employing ML techniques for predictive modeling. While 

previous studies have explored various SCMs such as silica fume and fly ash, this research distinguishes 

itself by focusing on RHA, an agricultural waste product that presents both environmental and economic 

advantages. Unlike earlier works that primarily utilized traditional methods for strength prediction, this 

study leverages advanced ML algorithms, including SVR, to provide a more accurate and nuanced 

empathetic of the relationships among mix design parameters and compressive strength. The application 

of SHAP analysis in this context is another novel aspect, offering insights into feature importance and 

the specific contributions of various parameters to the model's predictions. By highlighting the optimal 

RHA replacement level for compressive strength and demonstrating the forecasting competences of 

ML models, this research contributes valuable knowledge that can promote eco-friendly building 

methods. 

4. Conclusion 

This study examined the effect of RHA on compressive strength of pervious concrete and explored 

the use of ML models to predict this strength. The analysis leads to the following conclusions. 

 A positive correlation is observed between RHA content and compressive strength up to a 

specific point. The optimal RHA substitute level for achieving maximum strength was found to be 

around 10%. At this optimal level, pervious concrete containing RHA exhibited an 8% improvement in 

compressive strength compared to control concrete without RHA. Beyond the 10% replacement level, 

incorporating more RHA caused in a reduction in compressive strength. 

 Among investigated ML algorithms, the SVR model appeared as the most efficient for 

forecasting compressive strength. SVR model demonstrated superior performance, achieving a high 

coefficient of determination (R²) of over 0.97, indicating a robust correlation among forecasted and 

actual strength. Furthermore, the SVR model exhibited smaller RMSE and MAE values, signifying 

better accuracy in its predictions. These low error values suggest minimal deviations between predicted 

and actual compressive strength. 

 Hyperparameter optimization played a critical role in improving predictive performance of 

ML models. Through grid search techniques and cross-validation, the authors fine-tuned 

hyperparameters for each model, leading to improved accuracy and reduced risk of overfitting. The 

optimized parameters for SVR model, for instance, contributed significantly to its ability to capture the 

underlying relationships in the dataset. 
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 SHAP analysis showed that aggregate size is a significant factor affecting the compressive, 

followed by the binder ratio and curing period.  

4.1 Future Research Directions 

Looking forward, future research could explore several avenues to enhance understanding and 

application of RHA in pervious concrete. Investigating durability of RHA-blended pervious concrete 

under variable environmental circumstances would provide essential insights into its practical 

applications. Additionally, developing the dataset to comprise more diverse sources of RHA and 

varying mix designs could improve predictive models’ accuracy and generalizability. Further studies 

could also examine the effects of combining RHA with other SCMs, potentially leading to innovative 

formulations that optimize both performance and sustainability. Lastly, exploring mechanistic pathways 

of how RHA interacts with other components in concrete mix through advanced analytical techniques 

could deepen the understanding of its pozzolanic activity and overall impact on concrete properties. 

Future research could consider incorporating following data sources and parameters into ML models: 

 Local environmental circumstances: Data such as humidity, temperature, and precipitation in 

curing process can significantly influence hydration of concrete. Including these variables may help in 

understanding their impact on compressive strength. 

 Chemical composition of RHA: Analyzing chemical properties of RHA, such as silica content 

and pozzolanic activity, could provide insights into how variations in RHA quality affect concrete 

performance. 

 Particle size distribution: Detailed information on particle size distribution of both RHA and 

aggregates could enhance the model’s capability to forecast strength by accounting for variations in 

packing density and inter-particle bonding. 

 Long-term curing effects: Data from long-term studies on compressive strength development 

over time could improve predictions by allowing models to factor in time-dependent behaviors. 

 Mix design variations: Comprising a broader range of mix design parameters, including 

different types of aggregates or additional supplementary cementitious materials (SCMs), could provide 

a more comprehensive dataset for training the models. 

Incorporating these data sources could lead to more accurate and robust predictions, ultimately 

aiding engineers in optimizing concrete mixes for specific applications. The insights gained from this 

study can directly inform construction practice, guiding engineers in optimizing RHA content in 

pervious concrete to enhance both sustainability and performance. This study established the 

effectiveness of ML models. One of the key limitations of this study was availability of data. While the 

dataset of 193 observations provides a solid foundation for analysis, it is relatively limited given the 

inherent variability in concrete properties. Future studies should aim to expand the dataset by including 

diverse concrete mix designs, variations in RHA particle size, and additional environmental factors to 

enhance model accuracy and generalizability. This additional information could potentially improve 

predictive capabilities of ML models. Future research could explore incorporating additional data 

sources or parameters into ML models. This could involve data on specific properties of RHA used or 

local environmental conditions to refine prediction accuracy for compressive strength further. 

Additionally, investigating the explainability of the ML model could provide insights into the vital 

factors affecting the model's predictions. 

Abbreviations 

Agg/B Aggregate to binder ratio 

ANN Artificial Neural Network 

BPNN Backpropagation Neural Networks 

BT  Boosted Tree Regression 

CNN Convolutional Neural Network 

LR   Linear Regression 

ML  Machine learning 

NLR Non-linear Regression 



Sathiparan et al., SUST, 2025, 5(3): 000080 

000080-21 

 

RF   Random Forest Regression 

RHA Rice husk ash 

RHA/B Rice husk ash to binder ratio 

SCM Supplementary cementitious materials 

SHAP SHapley Additive exPlanations 

SVR Support Vector Regression 

W/B  Water to binder ratio 

XGB Extreme Gradient Boosting 
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