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Abstract: Concrete production imposes substantial environmental burdens, 

primarily through high carbon emissions and significant freshwater usage. 

This study addresses these challenges by developing a machine learning-based 

model to predict the compressive strength of concrete incorporating non-

potable water, supporting sustainable construction practices. A 

comprehensive dataset of 1,056 samples was compiled from existing literature, 

encompassing key mix parameters such as fine and coarse aggregates, water-

to-cement ratio, pH, and various supplementary cementitious materials. 

Multiple regression models were evaluated to predict compressive strength. 

Among these, the best-performing model achieved an R² of 0.98 and an RMSE 

of 1.45, demonstrating excellent predictive accuracy. Feature importance 

analysis identified the water-to-cement ratio, fine aggregate, and pH as the 

most influential variables affecting strength development. The study also 

applied explainable AI techniques to improve model interpretability and 

support informed engineering decisions. Sensitivity analysis confirmed model 

robustness across variable pH conditions, reinforcing its applicability to real-

world wastewater variability. The results underscore the value of integrating 

non-potable water into concrete design and demonstrate the potential of 

optimized ML models to enhance resource efficiency, reduce environmental 

impact, and guide the development of greener infrastructure solutions. 

Keywords: Non-potable water, sustainable concrete, compressive strength, 

LSBoost, machine learning.  

1 Introduction 

Concrete is among the most widely used construction materials globally, with its production 

projected to reach approximately 5.5 billion tons annually by 2050 [1]. While concrete offers notable 

structural benefits and versatility, its environmental drawbacks are substantial particularly in terms of 

carbon emissions and freshwater consumption. Cement manufacturing alone is responsible for 

approximately 5–8% of global CO₂ emissions due to its energy-intensive processes [2,3]. Furthermore, 

the high volume of freshwater required for concrete mixing exacerbates water scarcity, a pressing global 

issue affecting billions of people [4,5]. These environmental concerns underscore the urgency of 

developing sustainable alternatives, including the use of non-potable water sources in concrete 
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production. To this end, various studies have examined alternative water sources such as treated 

wastewater, industrial effluents, and saline water for concrete mixing [6–8]. 

Concrete compressive strength prediction traditionally relies on two main approaches. The first 

involves mathematical and statistical modeling techniques, which depend heavily on the availability of 

large, high-quality datasets [9,10]. Although these models can yield accurate predictions under ideal 

conditions, their reliability diminishes with limited or noisy data. The second approach includes 

nonlinear forecasting models, which while flexible often lack a firm theoretical foundation and may 

only produce locally optimal results [11,12]. These limitations become particularly pronounced in 

complex environments, such as when concrete is exposed to aggressive chemical conditions like 

sulphate attack, where variable interactions are highly nonlinear and difficult to model using 

conventional techniques [13]. Artificial neural networks (ANNs), along with other machine learning 

(ML) techniques, have emerged as promising tools for modelling and predicting the mechanical 

performance of concrete materials in both conventional and harsh environmental conditions [14,15]. 

Traditional regression-based models often fall short in capturing the nonlinear relationships among mix 

components, curing conditions, and durability characteristics, thereby limiting their predictive accuracy 

[16]. In contrast, ML approaches including artificial neural networks (ANNs), deep learning 

architectures, and ensemble learning techniques have demonstrated superior performance in modelling 

concrete behaviour [17]. 

Recent developments in ML have shown marked improvements in predictive performance. Models 

such as ANN and M5P have been implemented to estimate the compressive strength of polymer-

modified concrete with favorable results [18], while ANN frameworks have also been successfully 

applied to simulate strength characteristics under varying curing conditions and water-to-cement ratios 

[19]. In addition, the adoption of advanced deep learning models as convolutional neural networks 

(CNNs) and long short-term memory (LSTM) architectures has made it possible to uncover complex 

patterns within high-dimensional concrete datasets. Predictive models using extreme learning machines 

(ELMs) and ANNs have demonstrated strong performance in evaluating the strength of fly ash-based 

concrete [20], and ANN-based surrogate models have been employed to assess alkali-activated binder 

concrete incorporating nano-silica [21]. Additional studies have validated the robustness of ANN 

approaches in predicting a broad range of concrete properties under diverse conditions [15,22], and 

efforts to enhance predictive accuracy through sophisticated hyperparameter optimization have further 

advanced the effectiveness of ANN models for high-performance concrete applications [23]. 

Beyond neural networks, ensemble learning methods have played a pivotal role in improving 

predictive accuracy. Techniques such as support vector regression (SVR), gradient boosting machines 

(GBM), and ANN-based ensembles have proven effective in estimating compressive strength (fcf_cfc) 

based on material characteristics, mix proportions, and curing parameters [24]. Sensitivity analyses 

using SHapley Additive exPlanations (SHAP) have consistently identified cement content, W/C ratio, 

and curing temperature as the most influential features in strength prediction models [25]. Among the 

ensemble approaches, Least Squares Boosting (LSBoost) has shown strong predictive performance, 

particularly for geopolymer and sustainable concrete applications [11]. Comparative studies involving 

XGBoost, CatBoost, and Bayesian-Optimized Random Forest (BO-RF) models have further confirmed 

that ensemble methods outperform traditional single-model ML approaches [13]. To enhance predictive 

reliability, hybrid optimization strategies such as Genetic Algorithms (GA) and Improved Particle 

Swarm Optimization (IPSO) have been integrated with ML models for dynamic hyperparameter tuning 

[26]. In addition, soft computing techniques like adaptive neuro-fuzzy inference systems (ANFIS) and 

hybrid frameworks have been employed to predict long-term mechanical degradation, such as the 

reduction of elastic modulus in ASR-affected concrete, thereby improving durability forecasting [27].  

Tanyildizi [16] compared deep LSTM networks with Support Vector Regression (SVR), Least 

Squares Boosting (LSBoost), and Multiple Linear Regression (MLR) for predicting compressive 

strength (fcf_cfc) based on input parameters such as alkaline solution concentration, molar ratio, curing 

temperature, curing duration, and liquid-to-fly ash mass ratio. The deep LSTM model achieved the 

highest prediction accuracy at 99.23%, significantly outperforming SVR (78.57%), LSBoost (98.08%), 

and MLR (88.03%). Sensitivity analysis further identified curing temperature as the most influential 

factor, supporting prior findings that elevated temperatures enhance geopolymerization and accelerate 
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strength gain in geopolymer concrete [16,28]. Further research has confirmed the effectiveness of deep 

learning in sustainable concrete applications, with artificial neural networks (ANNs) achieving 

prediction accuracies as high as 96.1% [29]. Hybrid models that combine genetic algorithms with deep 

LSTM architectures have shown additional improvements in predictive performance [30]. Multiple 

comparative evaluations have concluded that DL models consistently outperform traditional regression-

based techniques when applied to geopolymer concrete and other sustainable binders [31]. 

Despite these advancements, limited research has focused on integrating non-potable water into 

ML-based strength prediction models. The variability in treated wastewater composition presents 

additional challenges, requiring more sophisticated ML frameworks to accurately estimate compressive 

strength. This study addresses this gap by developing an optimized Least Squares Boosting (LSBoost) 

model to predict the compressive strength of concrete incorporating non-potable water. By integrating 

feature selection, hyperparameter tuning, and ensemble learning techniques, the proposed model 

enhances prediction accuracy while identifying key factors influencing strength development. The 

significance of this research is to advance sustainable concrete mix design by utilizing machine 

learning-driven predictive modelling to optimize material usage, minimize environmental impact, and 

enhance resource efficiency in construction.  

2 Research data and methodology 

This research utilized a systematic approach to predict concrete strength using machine learning. 

The methodology encompassed dataset preparation, model selection, refinement, optimization, and 

validation. The process was designed to ensure the development of an accurate and robust predictive 

model, focusing on concrete mixes incorporating non-potable water. 

2.1 Dataset Preparation and Statistical Evaluation 

 
Fig. 1. Histograms of various input variables, including FA, CA, GGBS, ceramic powder, PC, TW, W/C, silica 

fume, SSA, slag, zeolite, calcium nitrite, micro silica, retarder, superplasticizer, and sodium nitrite. 

The dataset used in this study consists of 1,056 entries collected from previous studies on concrete 

mixes that utilize non-potable water. The input variables analyzed in this study include fine aggregate 

(FA), coarse aggregate (CA), ground granulated blast furnace slag (GGBS), ceramic powder, Portland 
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cement (PC), normal water (NW), treated wastewater (TW), pH, water-to-cement ratio (W/C), silica 

fume, sewage sludge ash (SSA), slag, zeolite, calcium nitrite, micro-silica, retarder, superplasticizer, 

and sodium nitrite. These variables are well-documented in literature as key factors influencing 

concrete's mechanical performance and durability. The histograms presented in Fig. 1 illustrate the 

frequency distributions of these input variables, providing insights into their variability and range within 

the dataset. The target variable in this study is the compressive strength (CS) of concrete, which will be 

examined based on its relationship with the input parameters. The distribution patterns reveal that some 

variables, such as fine and coarse aggregates, exhibit a broad range of values, while others, like silica 

fume and zeolite, appear more sparsely distributed. This visualization helps in understanding data 

spread and potential correlations with concrete compressive strength. 

Understanding the statistical properties of the dataset is important for building accurate models to 

predict concrete compressive strength. Table 1 shows the descriptive statistics of input variables and 

compressive strength. The reported metrics include the minimum, maximum, mean, median, standard 

deviation (SD), skewness, and kurtosis. These statistical measures provide valuable insights into the 

data’s dispersion, symmetry, and potential outliers, all of which are vital for informing preprocessing 

strategies and enhancing the effectiveness of machine learning models in predictive applications. 

Table 1. Descriptive statistics of input features and compressive strength values  

Parameter Unit  Min Max Mean Median SD Kurtosis Skewness 

Fine aggregate kg/m³ 20.0 1258.8 650.14 686.96 205.22 0.21 -0.32 

Coarse aggregate kg/m³ 0.0 1800.0 1060.0 1069.30 264.13 1.10 -0.18 

GGBS kg/m³ 0.0 280.0 3.85 0.00 27.89 60.34 7.66 

Ceramic powder kg/m³ 0.0 99.0 0.27 0.00 4.31 359.95 18.24 

Portland cement kg/m³ 0.0 730.0 359.94 360.00 90.63 3.30 -0.15 

Normal water kg/m³ 0.0 199.0 19.36 0.00 43.23 6.89 2.23 

Non-potable water kg/m³ 6.75 328.5 162.34 175.00 57.79 3.55 -0.51 

PH - 0.8 13.5 7.91 7.50 1.85 4.76 0.57 

Water/Cement Ratio - 0.259 0.9 0.49 0.50 0.08 5.60 0.88 

Silica Fume kg/m³ 0.0 122.2 1.41 0.00 9.24 61.59 7.26 

Sewage Sludge Ash kg/m³ 0.0 124.25 3.25 0.00 14.90 27.31 4.87 

SLAG kg/m³ 0.0 157.0 0.15 0.00 4.83 105.30 32.44 

Zeolite kg/m³ 0.0 105.0 0.38 0.00 5.14 261.04 15.45 

Micro Silica kg/m³ 0.0 35.0 0.53 0.00 4.28 63.95 7.93 

Retarder kg/m³ 0.0 0.54 0.0031 0.00 0.041 173.84 13.15 

Superplasticizer kg/m³ 0.0 14.25 0.20 0.00 1.33 70.93 7.92 

Sodium Nitrite kg/m³ 0.0 11.1 0.063 0.00 0.74 174.00 12.77 

Compressive Strength MPa 0.5 89.0 32.21 30.93 12.18 4.85 0.93 

 

Standard deviation is an important measure that shows how much the values in a dataset vary from 

the average. A low standard deviation means the values are close to the mean, while a high one indicates 

that the values are more spread out [32]. In this dataset, features such as superplasticizer, pH, and treated 

wastewater show low standard deviations, indicating consistent values across samples. Conversely, fine 

aggregate, coarse aggregate, and Portland cement exhibit high standard deviations, highlighting 

significant variation in mix proportions across studies. This heterogeneity emphasizes the need for 

proper feature scaling or normalization to ensure accurate and reliable machine learning model 

performance. 

Skewness and kurtosis are fundamental statistical measures used to assess the distribution 

characteristics of dataset variables. Skewness evaluates the asymmetry of a probability distribution, 

where a value of zero denotes perfect symmetry, while positive and negative values indicate longer 

right and left tails, respectively [33]. In this dataset, variables such as Portland cement, age, and 

superplasticizer exhibit positive skewness, suggesting the presence of high outliers, whereas treated 

wastewater and fine aggregate show negative skewness, indicating distributions with a few low outliers. 

Such asymmetry can distort model learning and may necessitate data transformation techniques, such 

as logarithmic scaling, to enhance distribution symmetry and minimize the influence of extreme values. 

In parallel, kurtosis measures the "tailedness" or peakedness of a distribution, indicating whether data 
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are concentrated around the mean or spread out with heavy tails. Values within the range of -10 to +10 

are generally considered acceptable for statistical analysis [33]. In this study, variables like retarder, 

superplasticizer, and sodium nitrite showed high kurtosis, reflecting sharply peaked distributions with 

potential outliers, while treated wastewater and compressive strength demonstrated moderate kurtosis, 

indicative of more balanced data dispersion.  

The Pearson correlation coefficient is commonly used to evaluate how strongly and in which 

direction two variables are linearly related [34]. Identifying such relationships is crucial for detecting 

multicollinearity, which can affect the performance and interpretability of AI-based models [35]. A 

Pearson correlation matrix was generated for the dataset, including all input features and the 

compressive strength (CS) of concrete incorporating non-potable water [36]. As shown in Fig. 2, the 

heatmap reveals notable correlations—such as a strong positive relationship between fine aggregate 

(FA) and coarse aggregate (CA)—while materials like sodium nitrite show weaker associations. This 

analysis provides valuable insights into variable interdependencies that may influence model outcomes. 

 

Fig. 2. Correlation matrix heatmap of all input variables. 

Potential multicollinearity within the dataset is indicated by the strong correlation coefficient of 

0.899 between fine aggregate (FA) and coarse aggregate (CA), as illustrated in Fig. 3. To assess this 

issue, the Variance Inflation Factor (VIF) was used. VIF is a common tool in regression analysis that 

shows how much multicollinearity increases the variance of a regression coefficient. Elevated VIF 

values signal redundant information, which can distort model estimates, reduce statistical reliability, 

and compromise the interpretability of machine learning models.A VIF value exceeding 10 is 

commonly viewed as indicative of high multicollinearity. [37]. 

The Variance Inflation Factor (VIF) values for fine and coarse Aggregate (CA) were both 

calculated as 5.19, indicating moderate collinearity. While a VIF above 5 suggests potential 

multicollinearity, it is not severe enough to distort model estimations significantly. This implies that FA 

and CA share a substantial portion of their information, potentially leading to redundancy in predictive 

modeling. To address this, Principal Component Analysis (PCA) was performed to determine whether 

these two variables could be effectively combined into a single principal component without substantial 

information loss. The scree plot in Fig. 4 illustrates the explained variance ratio for the principal 

components (PC1 and PC2), demonstrating that PC1 captures 95.63% of the total variance, while PC2 
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accounts for only 4.37%. This indicates that FA and CA share significant information, and the majority 

of their variance can be effectively represented by a single principal component (PC1). 

 This insight supports the application of dimensionality reduction, as replacing both features with 

PC1 can enhance model efficiency while preserving critical variance. The PCA biplot in Fig. 5 further 

explains the relationship between FA and CA in the transformed principal component space. The strong 

directional alignment of FA and CA with PC1 suggests that these variables contribute primarily to the 

first principal component, confirming their high correlation. Conversely, PC2 captures a minimal 

proportion of variance, indicating that the remaining information is largely redundant. This 

transformation underscores the potential to substitute these two correlated features with a single 

principal component, thereby reducing feature redundancy, enhancing computational efficiency, and 

preserving the underlying structure of the data. 

 
Fig. 3. Correlation heatmap of FA and CA. 

 

Fig. 4. Scree plot of PCA for FA and CA. 
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Fig. 5. PCA scatters plot of FA and CA. 

2.2 Performance evaluation of the developed models 

Evaluating machine learning and deep learning models requires reliable performance indicators, 

which are commonly applied in recent research [38–42]. These metrics provide a systematic framework 

for assessing how well models perform, thereby ensuring dependable predictions. In the present 

research, a range of commonly accepted evaluation metrics was utilized, including coefficient of 

determination (R²), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Peak Signal-to-

Noise Ratio (PSNR), Mean Absolute Percentage Error (MAPE), and Normalized Root Mean Squared 

Error (NRMSE). These indicators collectively offer a multi-dimensional view of model performance, 

capturing factors such as average prediction error, proportional error, and overall consistency. The 

mathematical formulations for each of these metrics are detailed in Equations 1 to 6, facilitating clarity 

in both computation and interpretation. 

For further validation of the models, two primary statistical tools—R² and RMSE—were employed. 

R²quantifies the extent to which a model accounts for variance in the observed data, with higher values 

reflecting a closer agreement between actual and predicted results. In contrast, RMSE measures the 

standard deviation of residuals, highlighting the average difference between predicted outcomes and 

real values. A lower RMSE value indicates more precise predictions. The joint application of R² and 

RMSE offers a robust approach for evaluating model accuracy across both training and testing phases 

[43–49]. 
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2.3 Model Development for Prediction Concrete Strength 

The process of building machine learning models to forecast the compressive strength of concrete 

began with a structured analysis of different algorithmic strategies to identify those with the highest 

predictive accuracy. A total of seven machine learning techniques were chosen for evaluation: Decision 

Tree (DT), Gaussian Process using a Squared Exponential Kernel (GP-SE), Gaussian Process 

Regression (GPR), Support Vector Machine (SVM), Ensemble Bagged Trees, Boosted Trees, and 

Random Forest. These selected models represent a diverse set of learning frameworks, covering 

individual tree-based methods, kernel-driven approaches, and ensemble-based strategies. This variety 

ensured a broad and balanced comparison of model behaviour and forecasting performance. 

The dataset was divided into 80% for training and 20% for testing to ensure the model’s reliability 

and generalization. Performance was assessed using RMSE, MAE, MAPE, and R² to ensure a 

comprehensive analysis. Among the models evaluated, Ensemble Bagged Trees and Boosted Trees 

showed the highest accuracy and consistency across all metrics, confirming their robustness and 

suitability for predicting concrete compressive strength. 

To improve the interpretability of the LSBoost model, a Mean Decrease in Impurity (MDI) analysis 

was performed. This method quantifies the reduction in impurity attributed to each input feature across 

all trees in the ensemble, producing a global ranking of variable importance. In addition, Partial 

Dependence Plots (PDPs) were used to visualize how changes in influential features—such as pH and 

sewage sludge ash (SSA) content—affect the model’s predictions. 

To enhance model performance further, a comprehensive feature selection strategy was 

implemented. Initially, MATLAB’s predictor importance function was used to identify significant 

variables, with features scoring below 0.01 considered for removal to reduce redundancy and improve 

efficiency. To address multicollinearity, Variance Inflation Factor (VIF) analysis was conducted, 

applying a cutoff value of 5.0 for variable retention. Principal Component Analysis (PCA) was also 

utilized to merge highly correlated inputs—such as fine and coarse aggregates—into a single principal 

component, preserving critical information while simplifying the input space. This multi-tiered process 

optimized the dataset for model training, balancing predictive accuracy with interpretability. 

Using the refined dataset, the Boosted Trees model was further improved through Bayesian 

hyperparameter optimization, which efficiently searched the parameter space to maximize predictive 

accuracy. Key parameters such as learning cycles, learning rate, minimum leaf size, and number of 

predictors per split, were fine-tuned to enhance model performance. The optimized model utilized the 

Least-Squares Boosting (LSBoost) algorithm, a gradient boosting method that minimizes prediction 

error via a least-squares loss function [50]. First introduced by Friedman [51], LSBoost iteratively fits 

learners to residuals, improving accuracy with each cycle. Its effectiveness in capturing complex, 

nonlinear feature relationships has been well-documented in regression applications [52]. The 

integration of LSBoost with Bayesian optimization significantly improved the model’s accuracy and 

generalization, making it a highly reliable tool for predicting concrete compressive strength. 
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After the optimization process, the LSBoost model was validated to evaluate its accuracy and 

reliability in making predictions. The optimized model was then applied to newly designed concrete 

mixtures from the newest research papers, demonstrating its practical effectiveness in forecasting 

mechanical behaviour. This predictive capability offers a valuable tool for optimizing material 

composition, facilitating the development of sustainable, high-performance concrete tailored to specific 

engineering requirements. 

To confirm the LSBoost model’s predictive performance, both paired t-tests and Wilcoxon signed-

rank tests were used. The paired t-test compared the average results of LSBoost with other models, 

assuming normal distribution of errors. To address any possible non-normality, the Wilcoxon signed-

rank test was also applied as a non-parametric alternative, focusing on median differences without 

needing the data to be normally distributed [53]. This dual approach ensured robust and reliable model 

comparison. 

3 Analysis and Discussion 

This section provides a comprehensive examination of various machine learning models applied 

to predict the compressive strength of sustainable concrete incorporating non-potable water. It covers 

model evaluation using performance metrics, residual and sensitivity analyses, and feature importance 

assessment to understand key predictors influencing strength. The section also explores model 

robustness, data distribution effects, and the role of critical mix design parameters. Additionally, it 

emphasizes the practical relevance of integrating predictive models into decision-making tools for 

sustainable concrete development. 

3.1 Model Performance Evaluation 

To identify the most accurate approach for forecasting concrete compressive strength, a 

comparative analysis of multiple regression algorithms was conducted using a benchmark dataset. The 

evaluation involved seven predictive models: Decision Tree, Gaussian Process Regression (both 

standard and with the Squared Exponential Kernel), Support Vector Machine (SVM), Ensemble Bagged 

Trees, Boosted Trees, and Random Forest. These models were evaluated using key performance metrics, 

including RMSE, MAE, MAPE, and R². As shown in Table 2, the results highlight notable variations 

in performance across models, with some algorithms exhibiting superior accuracy and more consistent 

predictive behaviour. 

Table 2. Model Evaluation Metrics 

Model MSE 

(MPa²) 

RMSE 

(MPa) 

MAE 

(MPa) 

MRE (%) R² (–) 

Decision Tree 50.00 7.071 5.123 15.20 0.601 

Gaussian Process (SE Kernel) 45.00 6.708 4.789 14.80 0.625 

Gaussian Process Regression 48.00 6.928 4.892 14.50 0.603 

Support Vector Machine 60.00 7.746 6.321 18.00 0.512 

Ensemble (Bagged Trees) 32.37 5.689 4.261 13.74 0.705 

Boosted Trees 67.00 8.190 6.900 19.50 0.450 

Random Forest 90.00 9.480 7.340 22.00 0.390 

 

Among all the models tested, the ensemble bagged trees approach delivered the best performance, 

recording the lowest values for RMSE (5.689), MAE (4.261), and MAPE (13.74%), along with the 

highest R² score of 0.705. Fig. 6 compares RMSE and R² across the different models, clearly 

highlighting the superior results achieved by the ensemble method. To further assess accuracy, a scatter 

plot of actual versus predicted compressive strength values was created. As shown in Fig. 7, the 

predictions of the ensemble model closely match the actual values, with most data points falling near 
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the reference line. This strong correlation confirms the model’s effectiveness in capturing compressive 

strength patterns and its high predictive reliability. 

Residual analysis was performed to examine the distribution of prediction errors and verify the 

absence of systematic bias in the model’s output. A random dispersion of residuals around zero is 

considered ideal, as it indicates that the model does not consistently overpredict or underpredict 

compressive strength values. The residual plot in Fig. 8 confirms that the ensemble (bagged trees) model 

exhibits no discernible error patterns, reinforcing its predictive reliability and stability. To further 

validate the model’s performance, the distribution of actual and predicted compressive strengths was 

compared using a histogram, as shown in Fig. 9. The strong overlap between the two sets of values 

shows that the model's predictions are very close to the actual strength results for different samples. 

This alignment confirms the high predictive accuracy of the bagged trees model. However, minor 

deviations in the tails of the distribution suggest potential areas for further improvement, particularly 

for extreme values. These discrepancies could be addressed through hyperparameter tuning or the 

inclusion of additional input features, improving the model’s capacity to generalize over a wider 

spectrum of compressive strength values. 

 
Fig. 6. Error performance of different models.  

 

Fig. 7. Actual vs. Predicted Concrete Strengths for the ensemble (bagged trees) model. 
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Fig. 8. Residual analysis for the ensemble (bagged trees) model.  

 
Fig. 9. Histogram comparing the distributions of actual and predicted compressive strength values. 

To evaluate the generalization capability of the best-performing model, the Ensemble Bagged 

Trees approach was applied to the full dataset. This comprehensive assessment aimed to verify the 

model's robustness by analysing residual patterns and examining the alignment between predicted and 

actual compressive strength values. Utilizing all available input features, the model achieved RMSE of 

3.08 and R² of 0.919. These results indicate excellent predictive performance, with the model capturing 

a significant proportion of the variance while maintaining low prediction error. As illustrated in Fig. 10, 

the scatter plot reveals a strong correlation between actual and predicted values, further validating the 

model’s accuracy. 

Before adopting the ensemble method, several baseline regression models—namely Linear 

Regression, Support Vector Regression, and Decision Tree—were evaluated. These conventional 

models demonstrated limited ability to capture the complex, nonlinear relationships inherent in the 

dataset. Linear Regression yielded a relatively low R² of 0.512, while SVR and Decision Tree models 

recorded higher RMSE values of 7.746 and 7.071, respectively, indicating weaker predictive 

capabilities. These shortcomings underscored the necessity for a more robust modelling technique. The 

Ensemble Bagged Trees model, using bootstrap aggregation to reduce overfitting, proved to be the most 

effective method for predicting the compressive strength of sustainable concrete. 
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Fig. 10. Actual vs. Predicted Concrete Strengths for the ensemble (bagged trees) model for all datasets. 

3.2 Investigation of Large Residuals, Feature Importance, and Model Comparison 

Additional analyses were conducted to further assess the model’s performance and identify 

opportunities for refinement. These analyses focused on detecting large residuals, evaluating feature 

importance, and comparing the predictive capabilities of various regression models. A residual analysis 

was used to assess how accurately the model estimated concrete compressive strength. A threshold of 

±15 MPa was set to flag substantial deviations between predicted and actual values. As shown in Fig. 

11, most residuals are centred around zero, reflecting the model’s generally strong performance. 

However, a few data points exceeded the ±15 MPa threshold highlighted in red indicating possible 

sources of error such as outliers, inconsistencies in measurement, or complex input interactions that the 

model does not fully capture. 

Identifying and investigating these high-residual cases may help improve data preprocessing and 

feature selection, ultimately enhancing the model’s predictive robustness. The residual plot in Fig. 12, 

representing the bagged trees model, further supports these findings. The residuals are symmetrically 

distributed around zero, indicating the absence of systematic bias in overestimating or underestimating 

compressive strength. The almost normal shape of the residuals suggests that the Bagged Trees model 

understands the data well, making it a good choice for predicting concrete compressive strength in real-

world use. 

  
Fig. 11. Residual plot highlighting large residuals (≥ ±15 MPa) in the concrete strength prediction model. 
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Fig. 12. Residual distribution plot for the Bagged Trees model, illustrating near-normal distribution and overall 

prediction accuracy in estimating concrete compressive strength. 

A feature importance analysis using the Ensemble Bagged Trees model identified the W/C ratio as 

the most influential predictor of concrete compressive strength, with the highest importance score 

(0.02539), as shown in Fig. 13. This aligns with established concrete mechanics, where lower W/C 

ratios enhance cement hydration and strength, while higher ratios increase porosity and reduce 

performance. The strong impact of the W/C ratio underscores the need for precise control, particularly 

when using non-potable water or alternative binders in concrete mix designs. 

 Following W/C, fine aggregate (0.022362) and coarse aggregate (0.0199) also exhibit high 

importance, underscoring their role in particle packing, load distribution, and microstructural stability. 

Fine aggregates influence workability and paste-aggregate bonding, while coarse aggregates contribute 

to load transfer efficiency and overall mechanical stability. The interdependence between aggregate 

gradation and water content is crucial in optimizing concrete strength, as improper proportions may 

lead to void formation or excessive water demand, negatively impacting durability. This suggests that 

future predictive models may benefit from incorporating aggregate shape, texture, and gradation 

parameters to enhance prediction accuracy further.  

 
Fig. 13. Feature important analysis. 
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Additionally, the pH level (0.016797) plays a critical role in compressive strength prediction, likely 

due to its influence on hydration reactions, mix consistency, and long-term durability. A well-balanced 

alkaline environment is essential for optimal cement hydration, as extreme pH values can either retard 

or accelerate hydration, leading to undesirable strength variations. In the context of non-potable water 

utilization, pH fluctuations must be carefully managed to prevent adverse effects on cementitious 

reactions and long-term concrete stability. Conversely, materials such as ceramic powder, silica fume, 

and sewage sludge ash (SSA) exhibit lower importance scores, suggesting a limited contribution to 

compressive strength prediction in this dataset. However, this does not necessarily diminish their 

engineering significance, as their impact may be context-dependent, influenced by dosage levels, curing 

conditions, and synergistic effects with other cementitious materials. For instance, silica fume is known 

for its pozzolanic activity, which enhances later-age strength and durability, yet its effectiveness 

depends on the alkali-silica reaction (ASR) potential and calcium hydroxide availability in the mix. 

Similarly, ceramic powder and SSA may provide sustainability benefits, such as waste valorization and 

carbon footprint reduction, even if their direct influence on early-age strength is minimal. 

To compare the performance of different prediction models, three regression algorithms—

Decision Tree, Bagged Trees (Ensemble), and Gaussian Process Regression—were tested for their 

accuracy. Their effectiveness was evaluated using RMSE and R² as performance metrics. Table 3 

highlights the performance metrics for the selected models. 

Table 3. Performance evaluation of regression models for predicting concrete compressive strength based on 

RMSE and R² metrics. 

Model RMSE (MPa) R² (–) 

Decision Tree 3.598 0.889 

Bagged Trees (Ensemble) 3.085 0.919 

Gaussian Process Regression 3.955 0.866 

 

Among the models evaluated, the bagged trees (ensemble) approach delivered the strongest 

performance, achieving the lowest root mean square error (RMSE) of 3.085 and the highest coefficient 

of determination (R²) at 0.919. These metrics indicate that the bagged trees model is the most accurate 

and reliable for predicting concrete compressive strength, outperforming both the decision tree and 

Gaussian process regression models. The low RMSE reflects its ability to minimize prediction errors, 

while the high R² demonstrates its effectiveness in capturing the majority of variance within the dataset. 

This superior performance is largely due to the ensemble learning strategy, which enhances model 

robustness by combining the outputs of multiple decision trees, thereby reducing the risk of overfitting. 

Conversely, while the Decision Tree model produced acceptable results, its higher RMSE and lower R² 

suggest limitations in capturing complex data patterns, making it more susceptible to overfitting and 

reduced predictive accuracy. 

Although the Gaussian Process Regression model captured certain trends, its higher RMSE (3.955) 

and lower R² (0.866) indicated limited predictive accuracy compared to the Bagged Trees model. 

Further analysis highlighted the sensitivity of the LSBoost algorithm to data distribution, particularly 

regarding outliers. When outliers were retained, LSBoost achieved strong performance; however, their 

removal led to a significant decline in accuracy, with RMSE rising to 7.30 and R² dropping to 0.00. 

This indicates that the outliers represented meaningful structural information rather than noise. 

Therefore, instead of removing outliers, employing advanced feature engineering techniques may be 

more effective in preserving data integrity and enhancing model generalization. 

3.3 Refined Dataset and Optimized Models 

A feature importance analysis was conducted to identify the most influential variables affecting 

concrete compressive strength, thereby enhancing the practical applicability of both the refined dataset 

and the optimized predictive model. The results confirmed that the water-to-cement ratio and fine 

aggregate were the most impactful variables, significantly contributing to the model’s overall 

performance. These key features, along with coarse aggregate, pH level, and Portland cement, were 

prioritized during dataset refinement, contributing to the observed reduction in RMSE to 1.49 and 

improved prediction reliability. The residual plots in Fig. 14 illustrate the influence of key input 
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variables on the LSBoost model’s prediction accuracy. These visualizations highlight the importance 

of maintaining consistent and reliable data for each feature. Among the variables, W/C and FA show 

the strongest impact on compressive strength predictions, which aligns with established principles in 

concrete mix design. Their significant effect suggests that careful control of these parameters can 

enhance the accuracy and stability of strength forecasts. The roles of CA, pH level, and PC also 

demonstrate notable contributions, reinforcing the value of including these variables in future predictive 

modelling and experimental research. 

To enhance model interpretability, Mean Decrease in Impurity (MDI) was performed to measure 

how much each input variable influenced the LSBoost predictions. As illustrated in Fig. 15, Partial 

Dependence Plots (PDPs) were generated to illustrate how variations in pH and SSA impact model 

predictions. The pH effect demonstrates a peak in strength around pH 9, while the SSA effect follows 

a parabolic trend, suggesting an optimal dosage range for strength enhancement. These visual tools 

provide engineers with valuable insights for optimizing concrete mix designs, supporting data-driven 

decisions in sustainable construction. 

   

(a) Fine Aggregate             (b) Coarse Aggregate.                (c) pH 

         

(d) W/C                         (e) Portland Cement. 

Fig. 14. Residual plots of the optimized LSBoost model illustrate the relationship between prediction residuals 

and key input variables. 

 

(a) pH impact shows peak strength around pH 9          (b) SSA effect follows a parabolic trend 

Fig. 15.  Partial Dependence Plots (PDPs) of pH and SSA. 

Given the variability in non-potable water composition, a sensitivity analysis was conducted by 

artificially adjusting pH values within the dataset. As shown in Fig. 16, the model demonstrated high 

prediction accuracy across a wide pH range (7–13), with minimal accuracy loss even at extreme pH 

levels. The highest prediction accuracy was observed near pH 9, suggesting an optimal range for 

strength estimation. A stable high-performance zone (±2%) is highlighted in green, reinforcing the 

model's robustness across different water compositions. These findings indicate that the model can 

generalize well across varying pH levels, ensuring reliable compressive strength predictions for 
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sustainable concrete mixtures. Future research will focus on incorporating additional treated wastewater 

sources to further improve model adaptability and performance. 

LSBoost algorithm was selected for its capacity to iteratively refine predictions by minimizing 

residual errors and effectively modelling complex, nonlinear interactions among input variables. Upon 

optimization, LSBoost markedly outperformed the Bagged Trees model, achieving a substantially lower 

RMSE of 1.45 and an improved R² of 0.98. These results signify an almost perfect alignment between 

predicted and actual compressive strength values, confirming LSBoost as the most reliable and accurate 

model for forecasting concrete performance in this study. 

 
Fig. 16. Model prediction accuracy across pH variability. 

The comparison shows that LSBoost performs better when outliers are included as in Fig. 17. In 

(a), the RMSE is significantly lower when outliers are included, suggesting better model accuracy. In 

(b), predicted values align more closely with actual strength when outliers are retained. The residual 

plot in (c) confirms this, showing tighter clustering around zero with outliers. Overall, the results 

indicate that keeping certain outliers can improve LSBoost's predictive performance. 

     

      (a) RMSE analysis            (b) Actual vs. predicted strength.      (c) Residual analysis. 

Fig. 17. Comparison of LSBoost performance with and without outliers.  

Using the refined dataset as a foundation, the LSBoost model was subjected to a detailed 

hyperparameter optimization process aimed at improving its predictive performance. This process 

involved systematically fine-tuning critical parameters—including the learning rate, the maximum 

number of splits, and the number of learners—with the goal of reducing prediction error to the lowest 

possible level. This iterative process led to a significant improvement in the LSBoost model's 

performance, resulting in a reduced RMSE of 1.45. The progress of the optimization process is 
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illustrated in Fig. 18, where the minimization of the objective function over iterations reflects the 

gradual enhancement of model accuracy. The cumulative distribution of residuals for the Optimized 

LSBoost model Fig. 19 demonstrates a high improvement in prediction accuracy. The rapid increase 

around zero, with 90% of residuals within a small range, highlights the model's achieving high 

reliability. 

 
Fig. 18.  Hyperparameter optimization progresses for the LSBoost model. 

 
Fig. 19.  Cumulative residual distribution for optimized LSBoost. 

Both paired t-tests and Wilcoxon signed-rank tests were performed against other machine learning 

models to evaluate the statistical significance of the LSBoost model's performance. Both tests confirmed 

a statistically significant improvement, with the paired t-test yielding a p-value of 0.000013 and the 

Wilcoxon test yielding 0.015625. These outcomes demonstrate the LSBoost model's higher predictive 

power over more conventional methods. 

A comparative evaluation of actual versus predicted concrete strengths for the Optimized LSBoost 

model was conducted to assess its ability to capture underlying data patterns. The cumulative 

distribution analysis in Fig. 20 demonstrates a remarkable alignment between actual and predicted 
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values, with both distributions exhibiting near-perfect overlap. This strong correlation confirms that the 

model effectively generalizes across diverse concrete mix compositions, accurately identifying key 

trends in the dataset. Additional validation signifying that the model effectively accounts for 98% of 

the variation in concrete compressive strength. This highlights LSBoost’s superior predictive capability 

compared to traditional regression models. Additionally, the performance comparison of different 

feature selection approaches is illustrated in Fig. 21, demonstrating that the FA & CA combination 

results in the lowest RMSE and highest R². In contrast, the PCA-transformed model performed the 

worst, suggesting that dimensionality reduction may lead to information loss in this specific dataset. 

 
Fig. 20. Cumulative distribution of actual vs. predicted Strength. 

 
Fig. 21. Comparison of model performance using different feature selection methods. 

 

The optimized LSBoost model demonstrated strong predictive reliability and consistency. Fig. 22 

shows that the residuals are tightly concentrated around zero, with minimal variance and few outliers—

indicating stable performance and low prediction error. In Fig. 23, the close alignment of predicted 
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versus actual compressive strength values along the ideal fit line (R² = 0.98) highlights the model’s 

excellent accuracy and its ability to generalize effectively across diverse concrete mixtures. 

 
Fig. 22.  Residual boxplot for optimized LSBoost. 

 

Fig. 23.  Model performance comparison of actual and predicted strengths for optimized LSBoost. 

The accuracy of the Concrete Strength Predictor model was tested using a User Graphical Interface 

(UGI) by comparing its predicted compressive strength values with experimental results reported in 

recent studies. The UGI displayed predicted values based on user-input parameters, allowing for a direct 

comparison with published results. Lokesh et al.[6] investigated concrete incorporating treated 

wastewater, reporting an actual compressive strength of 36.8 MPa, while the model predicted 35.9 MPa, 
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indicating a slight underestimation. Similarly, Micheal and Salam [7] studied tertiary treated wastewater, 

with an experimental strength of 35 MPa, and a model prediction of 35.19 MPa, demonstrating excellent 

accuracy Fig. 24. In the case of raw wastewater, Jahandideh et al. (2024) reported a compressive 

strength of 34.1 MPa [8], while the model estimated 33.3 MPa, reflecting a minor deviation. These 

results confirm that the predictor exhibits high reliability, particularly in cases where the wastewater 

underwent advanced treatment. 

 

Fig. 24.  Concrete strength predictor user graphical interface (UGI) displaying input parameters and predicted 

compressive strength. 

The LSBoost algorithm provides a reliable machine learning framework for optimizing concrete 

mixes that incorporate alternative water sources. Its analysis shows that the water-to-cement ratio, fine 

aggregate content, and pH level are the most influential factors, playing a key role in determining the 

compressive strength of concrete. Consequently, predictive modeling can serve as a quantitative 

decision-support tool for engineers, enabling more precise mix adjustments based on projected strength 

outcomes. In practice, the strong correlation between W/C ratio and compressive strength suggests that 

machine learning-driven optimization can help define the threshold values for water content, ensuring 

adequate cement hydration while mitigating excess porosity.  

The sensitivity of compressive strength to pH fluctuations highlights the necessity of maintaining 

an optimal alkalinity range when utilizing treated wastewater. This suggests that predictive models can 

guide engineers in adjusting admixture dosages or introducing pH stabilizers to enhance mix 

consistency and hydration kinetics. Furthermore, integrating LSBoost predictions into automated mix 

design workflows allows for real-time strength estimations, reducing reliance on extensive empirical 

testing. The identification of key predictive variables supports targeted mix modifications, such as the 

optimized use of supplementary cementitious materials (SCMs), admixtures, and alternative aggregates. 

By refining material selection and proportioning strategies through predictive analytics, engineers can 

develop more resource-efficient, high-performance concrete formulations, promoting sustainability 

while maintaining structural integrity. The robustness of LSBoost in capturing nonlinear interactions 

further suggests its potential application in adaptive quality control systems, where predictive 

adjustments can compensate for variability in raw material properties, environmental conditions, or 

curing regimes. These results highlight the vital role of advanced machine learning methods in 

improving accuracy, promoting sustainability, and increasing efficiency within contemporary concrete 

engineering practices. 

4 Limitations of the Study  

Despite the strong predictive performance of the LSBoost model, several limitations may affect its 

practical deployment and robustness. The model was trained on literature-based data and lacks 
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validation against field-prepared concrete, highlighting the need for real-world testing. Key 

environmental factors—such as sulphate exposure, temperature variation, and long-term durability—

were not considered, limiting generalization. Additionally, variability in the chemical composition of 

non-potable water could impact accuracy, suggesting the integration of detailed water quality 

parameters in future models. Methodologically, the model’s sensitivity to data distribution and outliers 

indicates a need for advanced feature engineering or hybrid AI approaches. Expanding the dataset with 

site-specific, real-time data will further enhance model adaptability and relevance in sustainable 

concrete design. 

5 Conclusions 

This research established a robust machine learning framework aimed at forecasting the 

compressive strength of sustainable concrete incorporating non-potable water, in response to growing 

demands for environmental sustainability and resource-efficient practices in construction. An enhanced 

version of the Least Squares Boosting (LSBoost) model was developed and tested, incorporating 

statistical evaluation, sensitivity assessment, and explainable AI tools. The model demonstrated 

excellent performance, achieving a coefficient of determination (R²) of 0.98 and a root mean squared 

error (RMSE) of just 1.45, reflecting strong agreement between the experimental and predicted results. 

These outcomes highlight the potential of intelligent systems to support mix design optimization, 

minimize material excess, and advance eco-conscious construction methodologies. 

One of the notable insights from this investigation is the identification of key input variables 

influencing compressive strength, including the water–cement ratio, the proportion of fine aggregates, 

and the pH of the mixing water. Recognizing the significance of these features provides engineers with 

a practical, data-informed approach to designing concrete mixes, potentially reducing reliance on 

conventional trial-and-error methods. The study also reinforces the advantages of ensemble learning 

models in boosting the predictive strength and dependability of AI applications in the domain of civil 

materials. 

While the results are promising, additional research is recommended to confirm the model’s 

effectiveness under real-life construction conditions. Future investigations may explore broader datasets 

encompassing different treatment levels of non-potable water and evaluate the long-term durability of 

concrete exposed to diverse environmental factors. Moreover, incorporating more complex AI 

techniques, such as hybrid deep learning architectures, could further improve predictive accuracy. 

Advancing these research directions will enhance the role of machine learning in producing high-

performance, sustainable concrete solutions that align with environmental goals. 
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