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Abstract: This study investigates using machine learning techniques to
predict the compressive strength of cement-stabilized earth blocks (CSEBSs).
CSEBs are a promising sustainable construction material, but their
compressive strength depends on various soil characteristics. Accurately
predicting this strength is crucial for design and construction purposes. The
research analyzes the influence of several soil properties, including particle
size distribution, Atterberg limits, and compaction test results, on the
compressive strength of CSEBs. For this purpose, experimental program was
conducted using nine different soils and three different cement contents to
prepare the CSEBs. Additionally, it explores the efficacy of an Artificial
Neural Network (ANN) model in predicting this strength based on these soil
characteristics. The findings reveal that cement content significantly impacts
compressive strength, followed by other factors like the coefficient of
curvature, sand content, and liquid limit. Utilizing SHAP (SHapley Additive
exPlanations) analysis allows for interpreting the model and identifying the
key features influencing its predictions. Focusing on a reduced set of crucial
features identified through SHAP analysis can maintain acceptable prediction
accuracy while reducing data acquisition efforts. This research signifies the
potential of machine learning, particularly ANN models, for accurately
predicting the compressive strength of CSEBs based on their soil properties.
This advancement can contribute to the efficient and sustainable development
of constructions utilizing CSEBs.

Keywords: cement stabilized earth block, soil characteristics, compressive
strength, ANN, SHAP analysis

1 Introduction

Masonry structures, particularly those built with brick, stone, or concrete, are incredibly durable
and can last centuries with proper maintenance. This reduces the need for replacements and makes them
an excellent long-term investment. Also, the high thermal mass of masonry materials allows them to
absorb and release heat slowly, contributing to improved thermal comfort within the building [1]. This
can lead to lower energy consumption for heating and cooling. Fired bricks and concrete blocks are
common masonry types used for construction [2]. However, the production of fired bricks and concrete
involves significant energy consumption, contributing to higher carbon footprints [3]. Therefore, in
recent years, there has been an increased interest in using cement-stabilized earth blocks (CSEBS) for
construction, especially for one or two-story residential houses. CSEBs are building materials made
primarily from compressed soil mixed with a stabilizing agent, typically cement or lime [4]. Stabilized

earth blocks have a lower environmental impact due to their locally sourced materials and lower
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production energy. Also, it is generally cheaper than fired bricks and concrete, making them accessible
in developing regions. Using local soil minimizes transportation requirements and supports local
economies [5].

The properties of CSEBs are influenced by several key factors, which can be broadly categorized
into material factors (soil type, stabilizer type, and content, aggregates), production process factors
(mixing process, compaction pressure, curing condition) and environmental factors (moisture exposure,
temperature variations, salt content) [6]. Especially different soil types, characterized by their particle
size distribution, clay content, and organic matter, require different stabilization approaches and affect
the final properties of the blocks. It's essential to consider the interplay of these factors when selecting
and using CSEBs for specific applications. Careful evaluation and adherence to best practices ensure
optimal performance and safe, sustainable construction with these promising building blocks. Obtaining
the compressive strength of stabilized earth blocks for design purposes by experimentation is common,
but it is difficult, time-consuming, and expensive compared to using characteristics of soils. Statistical
modeling has been employed in structural engineering to forecast various engineering features of
stabilized earth blocks [7]. It is emphasized that statistical modeling has a significant role in predicting
outcomes in construction materials properties. Construction industries frequently need to rapidly assess
soil parameters to evaluate their suitability for CSEBs production. The influence of soil characteristics
on the compressive strength of stabilized earth blocks and statistical analysis is essential for predicting
the properties of stabilized earth blocks, particularly in developing countries, where financial constraints,
lack of testing equipment, and restricted time for design purposes are prevalent [8]. Soil characteristics
can be easily acquired using inexpensive equipment compared to equipment used for strength properties.

The effect of soil texture on water absorption, compressive strength, flexural tensile strength, and
durability parameters of soil-cement blocks was investigated by Venkatarama Reddy et al. [9].
According to the results, the maximum strength of the blocks was achieved at a clay content of about
14%. A decrease in the initial water absorption rate and increased saturated water content were observed
as the clay content increased. Kwon et al. [10] used five different soil classifications to compare the
compressive strength of compressed cement-soil mortars. Soils are identified by passing through sieve
number one. Five different soil particle sizes, 4.75, 1.18, 0.6, 0.3, and 0.15 mm, were used for the
experiment. The results indicated fine-grained soil had better compressive strength and less water
absorption. The effect of manufactured sand grading on the compressive and flexural strengths of dry-
mix mortars was investigated by Liu et al. [11]. The results showed that as the amount of coarse sand
in the mortar increased, the compressive and flexural strengths of the mortar also increased. The effect
of sand grading on the stiffness and compressive strength of cement and lime mortar has been
documented by Mohammed et al. [12]. Three different strength classes of mortar (mortar types M2, M4,
and M6) and two types of sand grading (coarse and fine) were used in this investigation. According to
the results, the mortar produced with coarse sand has the highest stiffness and compressive strength
among the three types of mortar. Jeyasegaram and Sathiparan [13] explored how the ratio of fine
particles and overall particle size distribution (fine content and uniformity coefficient) affect the
properties of earth cement blocks. Key findings show that adding more fine particles initially increases
density and strength, but excessive fine content decreases density and wet flexural strength. Ultimately,
both fine content and particle size distribution significantly influence the final compressive strength of
the blocks. Although, several types of research conducted on the effect of particle size distribution, fine
content (clay and silt), and sand content on the compressive strength of CSEBs, it is rare to find a study
on the combined effect of these properties with Atterberg limits and protector compaction test results
values on compressive strength of CSEBs.

These three aspects significantly influence the compressive strength of CSEBSs, playing a crucial
role in creating a well-compacted and strong block. These factors interact and influence each other. For
example, soil with a high plastic index might require adjustments in particle size distribution (adding
more coarse aggregates) or stabilizer content to compensate for the challenges associated with its
plasticity. Therefore, understanding the interplay between these three aspects is crucial for optimizing
the mix design and achieving the desired compressive strength in CSEBs. Machine learning techniques
have gained significant traction in recent years for their ability to predict the mechanical properties of
construction materials such as conventional concrete [14, 15], self-compacting concrete [16], pervious
concrete [17, 18], masonry [19, 20], etc. Machine learning is expected to continue growing in the
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construction industry, playing a significant role in understanding, predicting, and optimizing the
compressive strength of various construction materials, leading to more efficient, sustainable, and
robust construction practices [21]. These models learn the relationships between different material
properties (independent variables) and compressive strength (dependent variable), allowing researchers
to identify the most significant factors influencing strength. Also, techniques like SHAP (SHapley
Additive exPlanations) values within machine learning models pinpoint which specific features within
the material data contribute most significantly to the predicted strength [22].

As the compressive strength of CSEB depends on several factors, machine learning algorithms can
handle large datasets of soil properties and compressive strength measurements, allowing researchers
to analyze complex relationships and identify trends that might be difficult to detect through traditional
statistical methods [23]. This capability facilitates exploring a more comprehensive range of soil
characteristics and their potential interactions. Machine learning models can effectively capture non-
linear relationships between soil properties and compressive strength. This is crucial because the
relationship between soil characteristics and compressive strength of CSEB isn't always straightforward,
and traditional linear methods might not accurately reflect the complex interactions between various
factors. Machine learning models can identify the most critical soil characteristics influencing the
compressive strength of CSEB. This helps researchers prioritize further investigation and optimize
stabilization techniques by focusing on the most impactful factors. Also, machine learning models can
be trained to predict the compressive strength of CSEB based on various soil characteristics. This allows
engineers to optimize the mix design by selecting suitable soil types and stabilizer dosages to achieve
desired strength requirements without compromising other properties like durability or cost.

While studies have been used individually to study the effect of some soil characteristics on the
compressive strength of CSEB, the present study proposes a novel approach that uses statistical analysis
and Artificial Neural Networks to identify the most significant soil properties and more accurate and
robust prediction of compressive strength based on those key factors. Several types of soils are collected,
their properties are measured using experimental programs, and statistical analysis and Artificial Neural
Networks techniques assess their influence and significance.

2 Methodology

2.1 Material used

Soil 1 Soil 2 Soil 3

Soil 4 Soil 5 Soil 6

Soil 7 Soil 8 Soil 9

Fig. 1. Various soil types used in the experimental program
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The binder used was Ordinary Portland Cement (OPC) as specified in Sri Lanka Standard SLS855
[24]. The chemical composition of the OPC, by weight, was as follows: CaO = 66.6%; SiO» = 20.6%);
Al;03 = 4.5%; Fe;03; = 3.6%; and K;O + Na;O = 0.4%. The cement had the following specifications
3.15 specific gravity, 1362 kg/m?® bulk density, 325 m?/kg specific surface area, 140 minutes initial
setting time, and 190 minutes final setting time. Nine different lateritic soils available from the northern
part of SriLanka were used in the experiments and their physical appearance is shown in Fig. 1. Before
the soil was used for CSEB production, the properties of the soils were analyzed.

2.2 Mix design and specimen preparation

The research aimed to study how soil characteristics affect cement-stabilized earth blocks'
compressive strength. Therefore, it was decided that using the same mixed proportion as in the sites
would be appropriate for achieving the research goals. Blocks were cast using three different mix
proportions, namely 8%, 12%, and 16% of cement for soil by weight. To determine water quantity for
the mix, it is generally recommended to utilize a consistent water-to-cement ratio or fixed slump value
to maintain uniform workability. Particle size distribution varies at this location, requiring a certain
water-to-cement ratio for a uniform mixture. Despite clay and silt in the local soil, the slump test resulted
in zero, even with a higher water-to-cement ratio. Hence, the water-to-cement ratio is determined by
the ideal water content for achieving the highest dry density of the cement-soil mixture. For compressive
strength testing, the stabilized earth mortar was cast into cubic specimens with nominal dimensions of
150 mm>150 mm>150 mm. To ensure the statistical reliability of the compressive strength results, three
identical cube specimens were prepared for each of the 9 soil types at each of the 3 cement contents,
resulting in a total of 81 specimens cast for testing. Table 1 presents the mix proportion used for the
stabilized earth blocks.

Table 1. Mix design proportion of the material used for the stabilized earth blocks (for one meter cube of

mortar)
Mix ID. Soil type Cement Cement Soil Water
content (%) (kg) (kg) (L)
S1-08 Soil 1 8 143.3 1791.4 157.6
S1-12 Soil 1 12 211.1 1759.3 154.8
S1-16 Soil 1 16 276.3 1727.1 152.0
S2-08 Soil 2 8 156.8 1960.6 188.2
S2-12 Soil 2 12 231.8 1931.3 185.4
S2-16 Soil 2 16 301.4 1883.7 180.8
S3-08 Soil 3 8 139.4 1742.0 165.5
S3-12 Soil 3 12 207.6 1729.9 164.3
S3-16 Soil 3 16 271.3 1695.5 161.1
S4-08 Soil 4 8 124.7 1558.4 207.3
S4-12 Soil 4 12 183.0 1524.8 202.8
S4-16 Soil 4 16 238.0 1487.5 197.8
S5-08 Soil 5 8 144.4 1804.6 158.8
S5-12 Soil 5 12 210.8 1756.9 154.6
S5-16 Soil 5 16 280.1 1750.7 154.1
S6-08 Soil 6 8 145.7 1820.7 2185
S6-12 Soil 6 12 216.2 1801.9 216.2
S6-16 Soil 6 16 286.0 1787.5 2145
S7-08 Soil 7 8 150.1 1876.3 153.9
S7-12 Soil 7 12 219.6 1830.2 150.1
S7-16 Soil 7 16 286.9 1793.1 147.0
S8-08 Soil 8 8 135.6 1695.2 172.9
S8-12 Soil 8 12 200.5 1670.9 170.4
S8-16 Soil 8 16 262.1 1638.1 167.1
$9-08 Soil 9 8 146.8 1835.3 168.8
$9-12 Soil 9 12 217.9 1815.8 167.1
S9-16 Soil 9 16 289.0 1806.5 166.2
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Fig. 2 illustrates the mortar cubes' physical appearance after 28 days of moisture curing. Mortar
cubes with soil 3 and 6 showed a relatively darker color as they used the red soil for mixing. Other
mortar cubes show a light-yellow color.

8% 12% 16%

8% 12%  16% 8% 12% 16%
Soil 5 Soil 6

Soil 7

8% 12% 16%
Soil 9

Fig. 2. Hardened mortar cubes after 28 days of curing

2.3 Testing

2.3.1 Sieve analysis

Sieve analysis plays a crucial role in uncovering the particle size distribution of granular materials
and in the present study, the sieve analysis is done according to ASTM D422 [25]. This fundamental
test provides valuable information for various engineering and scientific applications, ranging from soil
classification and concrete mix optimization. The procedure begins with acquiring a representative and
dry sample, then selecting a series of sieves with decreasing mesh sizes tailored to the material and the
desired level of detail. Each sieve and the collecting pan are meticulously weighed for accurate mass
balance. The sample is poured onto the top sieve, and the stack is subjected to controlled mechanical
for 10 min. Following the shaking, retained material on each sieve is carefully brushed back onto the

000011-5



Sathiparan, SUEM, 2025, 1(2): 000011

stack, collected, and weighed separately. The retained mass on each sieve is then expressed as a
percentage of the initial sample mass, providing a quantitative representation of the particle size
distribution. The particle size distribution of each soil used in the study is presented in Fig. 3.

100

80

60

40

Percentage finer (%)

20

0.05 0.5 . .
Particle size (mm)

Fig. 3. Particle size distribution of the soils (number inside the circle indicates the soil type)

2.3.2 Proctor compaction test

2.35
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2.20

215

Dry density (g/cm?)
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2.00

4 6 8 10 12 14 16 18
Water content (%)

Fig. 4. Dry density variation with water content for each soil from proctor compaction test (humber inside the
circle indicates the soil type)
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The Standard Proctor Compaction Test (SPCT), outlined in ASTM D698 [26] was followed to
obtain the optimal moisture content and maximum dry density achievable for a given soil. For the test,
air-dried soil, sieved to remove large particles, is divided into portions with varying moisture contents
by adding different quantities of water. Each portion is layered into a mold and compacted with 25
blows per layer using a standard rammer. Wet and dry weights of the compacted soil and representative
moisture content samples are measured and from that moisture content and dry density are calculated
for each portion. Then, the dry density variation with moisture content was plotted as shown in Fig. 4.
Plotting dry density against moisture content reveals the peak, representing the optimal moisture content
at which the soil achieves its maximum density.

2.3.3 Atterberg limit test

The Atterberg Limits test is done according to the standardized protocols ASTM D4318 [27] to
identify the liquid limit and plastic limit of the soils. Each assesses the moisture content at specific
behavioral transitions. For the liquid limit test, a slightly wetter than expected paste is prepared in a
Casagrande cup. A standard groove is carved, and the cup is repeatedly dropped to observe groove
closure. The moisture content and drops needed for 12mm closure across three trials are plotted. A line
connecting the closest 25-drop trials intersects the 25-drop line, revealing the liquid limit. For the plastic
limit test, air-dried and sieved soil forms the starting point. Hand-rolling transforms the soil into
ellipsoidal masses, gradually reducing moisture until threads crumble at a specific diameter (around
3mm). Each thread's moisture content is meticulously measured. Plotting these values paints a picture,
with the moisture content at the intersection of the "thread breaks" line and the "constant diameter" line
representing the plastic limit.

2.3.4 Compression test

The compressive strength of stabilized earth blocks was evaluated using a displacement-controlled
method following the procedures outlined in ASTM C140 [28]. The load was applied at a constant rate
of 2 mm/min until failure, as shown in Fig. 5. Tests were conducted after 28 days of curing. The final
reported compressive strength for each mix design was determined as the average value obtained from
testing the three replicate specimens to ensure the statistical validity of the results.

A

Fig. 5. Compression test setup and failure type
3 Experimental results and discussion

3.1 Soil properties

Table 2 summarizes the soil properties from sieve analysis, proctor compaction, and Atterberg
limit tests. It simply means that 50% of the particles are smaller than D50, and the remaining 50% are
larger. A lower D50 value indicates finer soil with a smaller median particle size. On the other hand,
fineness represents a weighted average of the entire particle size distribution. Lower fineness values
indicate finer soil with a higher proportion of smaller particles.
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Table 2. Summary of the soil properties from sieve analysis, proctor compaction, and Atterberg limit test

Unit Soill Soil2 Soil3 Soil 4 Soil5 Soil6 Soil7 Soil8 Soil 9
Bulk density kg/m® 1413 1560 1421 1247 1537 1590 1601 1410 1551

Specific Density - 2564 2.632 2381 2128 2439 2500 2564 2381 2.500
Gravel content % 334 8.0 6.6 11.8 11.7 8.7 171 176 8.1
Sand content % 643 917 891 791 82.2 86.2 792 76.7 86.3
Fine content % 2.3 0.2 4.2 9.0 6.1 51 3.7 5.7 5.6
Fineness modulus mm 448 327 392 277 2.85 329 345 3.69 3.04
D50 mm 320 092 224 0.60 0.65 1.07 108 1.72 0.85
Cu - 8.0 2.2 7.4 5.0 45 7.6 6.4 10.0 5.5
Cc - 1.3 0.8 1.6 1.2 1.0 0.7 0.8 0.7 0.9
Plastic Limit % 15.5 00 376 310 0.0 37.5 0.0 26.8 0.0
Liquid Limit % 328 570 397 323 8.8 7717 441 332 50.4
Plasticity Index % 173 570 21 1.4 8.8 40.2 441 6.4 50.4
MDD g/lcm® 2288 2250 2246 2126 2252 2316 2314 2236 2274
OMC % 8.8 9.6 9.5 13.3 8.8 12.0 8.2 10.2 9.2
USCS classification SW SP SW  SW-ML SW-CL SP-CH SP  SP-OL SP-CH

Note: SW: well-graded sand, SP: poorly graded sand, ML: inorganic silts of slight plasticity, CL: inorganic clays
of low plasticity, CH: inorganic clay of high plasticity, OL: organic soil of low plasticity

Soil 1 has the highest D50 and fineness modulus value, with 3.20 and 4.48 mm, respectively. Soil
5 has the lowest D50 and fineness modulus values, 0.60 and 2.77 mm, respectively. The specific density
of the soils varies between 2.128 and 2.632, and soil 4 has the lowest specific density, with a higher
fine content of 9%. Maximum dry density (MDD) of the soils ranges from 2.126 to 2.314 and optimum
moisture content (OMC) varies from 8.2 to 13.3. Based on uniformity coefficient (Cu) and coefficient
of curvature (Cc) values, Soils 1, 3, 4, and 5 are categorized as well graded, and remaining soils are
classified as poorly graded.

3.2 Correlation between soil properties
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Fig. 6. Soil properties relationship scatter plot and correlation coefficient between soil properties
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Fig. 6 illustrates the scatter plot and correlation coefficient between soil properties. D50 Represents
the median particle size in a soil sample. There is a strong positive correlation between the D50 value
and the fineness modulus of the soil. Generally, a lower D50 indicates a lower fineness (finer soil). Also,
the present study has a strong correlation between sand content and gravel content for selected soils. A
similar observation was found between fine content and specific density. There is generally no direct
relationship between these two properties. For other soil characteristics, there is no strong correlation
between them.

Fig. 7 illustrates the compressive strength of CSEBs for various soil types. The compressive
strength varied between 2.05 to 11.58 MPa. For the particular cement content, the compressive strength
varies between 2.05 and 4.34 MPa for 8% cement content, 4.06 and 8.82 MPa for 12% cement content,
and 7.48 and 11.58 MPa for 16% cement content, respectively. Blocks with soil 6 showed higher
compressive strength for all three-cement content. All the blocks with 12% and 16% cement content,
except soil 1 with 8% content, satisfied the minimum requirement of 4.14 MPa for non-load-bearing
masonry blocks, which is recommended by ASTM C129 [29]. For blocks with 8% cement content, only
blocks with soil 6 satisfied the ASTM C129 [29] requirement. However, except for blocks with soil 3,
8, and 9, all other blocks met the local SriLankan standard SLS 1382 (> 2.8 MPa).

Cementcontent @8% ©12% B16%
12

}

oo

Compressive strength (MPa)

1 2 3 4 5 6 7 8 9
Soil type

Fig. 7. Compressive strength variation of the CSEBs for various soil types and cement content

3.3 Correlation between compressive strength and soil characteristics

Fig. 8 illustrates the correlation between compressive strength and soil characteristics for
individual cement and overall cement content. The compressive strength of stabilized earth blocks
correlates well with cement content. It is a well-known fact that one of the key factors influencing these
properties is the cement content [30]. Cement acts as a binder, filling voids and creating a solid matrix
that binds soil particles together. As the cement content increases, the chemical reaction between cement
and water (hydration) forms strong calcium-silicate-hydrate (C-S-H) gels, densifying the matrix and
contributing to strength [31]. Also, more cement paste fills the gaps between soil particles, leading to
better interlocking and friction transfer.

However, there is no strong correlation for compressive strength with any of the soil characteristics.
When compressive for individual cement content was considered, both liquid limit and MDD have
moderate correlation and positively affect the compressive strength. Soils with high liquid limits
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typically contain more clay particles, known to decrease strength due to their water-adsorptive nature
and potential swelling [32]. However, a certain clay content is often necessary for binding, and finding
the right balance is crucial. Soils with higher liquid limits exhibit greater plasticity, enabling easier
mixing and compaction. Proper compaction ensures density and minimizes voids, increasing strength
[33]. Maximum dry density reflects the state where soil particles pack together most tightly with a
specific moisture content. This compactness directly impacts the strength of cement-stabilized earth
blocks in several ways, such as enhanced interlocking, reduced porosity and effective cement
distribution [34]. Higher MDD implies better packing of soil particles, leading to stronger mechanical
interlocking and friction transfer [35]. This creates a more robust resistance to external forces. Also,
denser packing allows for improved cement distribution throughout the mix, ensuring its binding action
reaches more soil particles and maximizes its strengthening effect [36].
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Fig. 8. Correlation between compressive strength and soil characteristics

The sand content also has a similar trend except for blocks with 8% cement content. Generally,
sand content plays a complex role in impacting the compressive strength of cement stabilized earth
blocks. On the positive side, it can enhance the workability of the mix, making it easier to mix, mold,
and compact, leading to more uniform and denser blocks [37]. However, excessive sand content can

000011-10



Sathiparan, SUEM, 2025, 1(2): 000011

reduce particle cohesion, leading to lower strength [38]. Finding the optimal sand content for maximum
compressive strength is a balancing act. It depends on various factors like soil type, graduation of sand,
and cement content. Higher cement content can compensate for some of the strength reduction caused
by sand, allowing for potentially higher sand content while maintaining strength. That’s why sand
content positively influences the compressive strength of mix containing 12 and 16% cement content,
but less influence for mix containing less cement (8%). Specific density, plastic index, and OMC also
positively influence the compressive strength but the correlation is very weak.
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Fig. 9. Outline of ANN model used for the study

Although the coefficient of uniformity (Cu), coefficient of curvature (Cc), fineness, and fine
content negatively correlate with compressive strength, their correlation is very weak. A higher
coefficient of uniformity promotes denser packing, minimizing voids and maximizing cement-soil
contact, potentially leading to increased strength [39]. However, very high Cu, with too much fine
content (silt and clay), can create excessive water retention and porosity, weakening the block [40]. A
well-graded soil (balanced Cc) allows for denser packing of particles, minimizing voids and creating a
more robust structure. However, excessive fines (high Cc) can create excessive water retention and
porosity, lowering strength. Similarly, fine content also positively and negatively affects the
compressive strength of stabilized earth blocks [41]. Fine particles, primarily clay and silt, act as natural
binders, improving the cohesion between soil particles and cement, potentially leading to higher
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strength. However, high fine content can significantly increase water absorption and retention, lowering
strength [42]. The optimal Cu, Cc, and fine content for better compressive strength depends on various
factors such as soil type, cement content, and compaction effect.

4 Prediction models and feature importance

4.1 Dataset and parameter selection

This study uses a total of 81 datasets, which were obtained from the present experimental program.
Although thirteen soil characteristics were measured from testing, only ten parameters were considered
for further analysis. Mean particle size (D50) and gravel content are not considered due to their strong
correlation with fineness and sand content, respectively. Even though no strong correction is observed
between liquid limit, plastic limit, and plastic index, they are interconnected. Therefore, one parameter
(plastic limit) is not considered for further analysis. In addition to soil properties, cement content is also
considered an input parameter. The compressive strength of CSEBs is the model's response (output)
parameter. Eleven input parameters have been used for training and testing the artificial neural network.

4.2 Artificial Neural Networks model

Artificial Neural Networks (ANNSs) are machine learning models inspired by the structure and
function of the human brain. They consist of interconnected layers of nodes, loosely mimicking neurons,
that process information by transmitting signals through weighted connections. This allows them to
learn complex relationships between input data and desired outputs [43]. The design of the ANN created
in this study is shown in Fig. 9, where n is the number of hidden neurons with a single target output to
forecast the compressive strength of concrete. The ANN stop training criterion was the Root Mean
Squared Error (RMSE). Lower values are associated with more idealized network performance in this
sense. The correlation between outputs and targets in the networks is measured using regression values
or coefficient of determination (R?); an R? of unity denotes a high correlation. RMSE and R? were used
as the performance evaluation metrics for the created model.

4.3 Optimizing hyperparameters
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Fig. 10. RMSE variation with (a) number of neurons and (b) learning rate

Regression data for networks with varying numbers of hidden neurons are shown in Fig. 10(a).
Another filtering in the pre-evaluation of the networks using learning rate is shown in Fig. 10(b), where
the RMSE for every option was computed. The RMSE value shows a decreasing trend with several
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neurons for the training dataset. However, for the validation dataset, the RMSE value decreases up to a
number of neurons equal to three and a further increase in the number of neurons increases the RMSE
value. Also, for the number of neurons of three, both training and validation datasets show closer RMSE
values of 0.183 and 0.191 MPa, respectively. A similar trend was observed for change in learning rate
as the optimum learning rate was equal to 0.1 for the least RMSE for both the training and validation
datasets.

Fig. 11 shows the RMSE, which depicts a decreasing pattern as expected for a well-trained ANN.
This is also a good indicator of the network's learning process. The 81 inputs and outputs are randomly
divided into two sets (training and validation), represented by two lines in the plot figure. When the
network's error is evaluated against the validation vectors, the ANN is trained iteratively using the
chosen training vectors until convergence is reached.
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Fig. 12. Predicted vs. measured compressive strength for ANN model
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4.3 Performance of the model

Fig. 12 illustrates the predicted and measured compressive strength with the ANN model. The
model exhibits an R? value of 0.997 for training and 0.998 for validation datasets, indicating an excellent
level of explained variance. The RMSE is observed to be 0.143 MPa for training and 0.169 MPa for
validation, representing the excellent magnitude of the residuals. The MAE is determined to be 0.116
MPa for training and 0.133 MPa for validation, indicating the narrow absolute difference between
predicted and measured values. Lastly, the al0-index was estimated at more than 90%, which implies
significance in the model's accuracy in predicting the value within the 10% error range of the observed
values. It is worth mentioning that the R? value is closer to unity, suggesting that an ANN model can
only explain an excellent amount of prediction in the data.

4.5 Sensitivity analysis

Powerful, non-linear models like machine learning can be challenging to interpret due to their
complexity, resembling "black boxes" [44]. Fortunately, SHAP (SHapley Additive exPlanations) offers
a solution [45, 46]. This unified approach unveils the inner workings of complex models with humerous
parameters by attributing a unique contribution value to each feature for a specific prediction. Fig. 13
displays the average SHAP values for compressive strength predictions made by the ANN model,
highlighting the impact of different input features. As evident, cement content holds the highest SHAP
value, indicating its dominant influence on the prediction. This aligns with the fundamental role of
cement as the binding agent in concrete, responsible for cohesion between aggregate particles.
Compared to other constituents like water, aggregate type, and characteristics, cement directly and
significantly impacts C-S-H gel formation, a key contributor to compressive strength, justifying its high
SHAP value.

Cement content (%) +2.18
Cec

Sand (%)

LL (%)

Cu

MDD

Specific density
Fineness

oMC

Sum of (Pl & fine content)

0.0 0.5 1.0 15 2.0
mean(|SHAP value|)
Fig. 13. Mean SHAP value for ANN model

A deep analysis of the mean SHAP values reveals the profound importance of soil gradation after
cement content. The Coefficient of Curvature (Cc) is the second most important feature (mean | SHAP
| =+0.41), significantly outweighing basic physical properties like MDD and OMC. This underscores
that optimized particle-packing geometry is a prerequisite for effective cement stabilization. An ideal
Cc ensures minimal void space, forcing cement to act as a stronger binder rather than merely filling
large, inefficient pores. Similarly, Sand content is the third most important feature (mean | SHAP | =
+0.3). Sand provides the skeletal structure for the block, transferring compressive stress efficiently. The
positive SHAP influence confirms that sufficient sand is vital, especially when high cement contents
are used, as the cement is better able to bind the large, stable sand particles. Conversely, the minimal
impact of Fineness (mean | SHAP | = +0.01) suggests that the specific distribution of sand and fines,
as captured by Cc, is far more influential than the general fineness index alone.
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Fig. 14 presents the SHAP summary plot, a valuable tool for understanding the impact of different
features on the ANN model's predictions of compressive strength. The color spectrum represents the
range of values for each feature. The horizontal axis displays the SHAP value, quantifying the feature's
contribution to the predicted strength. Red dots indicate features with high and positive SHAP values.
The SHAP Summary Plot provides crucial insights into the direction and magnitude of feature influence.
The negative influence of Cc (where lower Cc values correspond to higher predicted strength) suggests
that for this specific set of lateritic soils, the highest compressive strength is achieved when the particle
size distribution is slightly poorly graded or gap-graded, deviating from the "perfect" Cc=1 value. This
might be due to a mechanism where the slight lack of intermediate particles allows the cement matrix
to effectively bridge the gap between fine and coarse fractions, promoting better hydration and binding
compared to a densely packed but potentially over-fined mix.

Higher cement content translates to higher predicted compressive strength, as evidenced by the
highest SHAP value of 3.5 on the positive side. This suggests that, within the range used in this study,
increasing cement content can potentially boost compressive strength by 3.5 MPa compared to the
average value. Conversely, a negative SHAP value of -3.5 on the negative side signifies that lower
cement content could decrease 3.5 MPa in compressive strength compared to the average. The plot also
reveals the negative influence of the coefficient of curvature (Cc), as higher strength is associated with
lower Cc values. Conversely, sand content, liquid limit (LL), and uniformity coefficient (Cu) exhibit
positive contributions to compressive strength. Notably, the changes in compressive strength due to
variations in other parameters appear relatively limited. In essence, the SHAP summary plot offers
valuable insights into the relative importance of each feature in the ANN model's predictions. This
understanding allows us to better interpret the model's behavior and identify critical factors influencing
the compressive strength of CSEBs.
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SHAP value (impact on model output)
Fig. 14. SHAP summary plot for ANN model

4.6 Feature importance

Having identified the importance of features through SHAP analysis, this study's next step is to
assess the robustness of the ANN model for compressive strength prediction while reducing the number
of input variables. This analysis is crucial, especially in real-world applications where specific
parameters might be challenging to measure, or predictions must be made with minimal data. Fig. 15
illustrates the model performance with various combinations of input parameters, gradually adding
features based on their SHAP-derived importance. Case 1 considers only cement content and coefficient
of curvature, the two most impactful parameters identified by SHAP. Cases 2 through 8 then
progressively add additional features based on their decreasing SHAP importance.
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As anticipated, incorporating more input parameters generally leads to decreased RMSE value,
indicating improved prediction accuracy. However, the reduction in RMSE becomes less significant
after Case 3, which utilizes only cement content, coefficient of curvature, sand content, and liquid limit.
This combination achieves an RMSE of 0.303 MPa and 0.326 MPa for the training and validation
datasets, respectively, offering near-equivalent performance compared to all input parameters. These
findings suggest that while including all available parameters can enhance model accuracy, a significant
portion of the predictive power can be retained by focusing on a smaller subset of critical features
identified through SHAP analysis. This reduction in input parameters can be advantageous in situations
where acquiring all data points is impractical or costly.

Fig. 16 illustrates the model's predicted and measured compressive strength utilizing only four
input variables (cement content, coefficient of curvature, sand content, and liquid limit). The model
exhibits an R? value of 0.988 for training and 0.989 for validation datasets, indicating an excellent level
of explained variance. The al0-index was measured at more than 86.67% of training datasets and 80.95%
for validation datasets, which implies significance in the model's accuracy in predicting the value within
the 10% error range of the observed values.

5 Conclusions

This study investigated the feasibility of using ANN to predict the compressive strength of CSEBs.
CSEBs are a promising sustainable building material, but their compressive strength is crucial for
design and construction and is influenced by various soil characteristics. This research explored the
impact of soil properties like particle size distribution, Atterberg limits, and compaction test results on
compressive strength and also evaluated the effectiveness of an ANN model in predicting this strength
based on these characteristics. From the study, the following conclusions were drawn:

e The findings highlight the significant influence of cement content on compressive strength,
followed by other factors like the coefficient of curvature, sand content, and liquid limit. This
aligns with existing knowledge about these properties' roles in binding and packing soil
particles, impacting the overall strength of the blocks.

e The study demonstrates the strong potential of the ANN model for accurate compressive
strength prediction, achieving an excellent R-squared value and an RMSE. This indicates the
model's ability to effectively learn and generalize the relationships between soil characteristics
and compressive strength.

e Furthermore, through SHAP analysis, the study unveils the inner workings of the ANN model,
revealing the relative importance of each soil characteristic in the predictions. This
transparency allows for interpreting the model's behaviour and focusing on the key features
most influential on compressive strength. Notably, the study demonstrates that by
concentrating on a reduced set of crucial features identified through SHAP analysis, acceptable
prediction accuracy can be maintained while minimizing data acquisition efforts. This is
particularly valuable when obtaining all soil property data might be impractical or costly.

In conclusion, this research underscores the potential of machine learning, particularly ANN
models, for accurate and efficient prediction of compressive strength in CSEBs based on their soil
properties. This advancement can contribute significantly to developing sustainable construction
practices by optimizing material selection, mix design, and construction processes for utilizing CSEBs
effectively. This can create robust, durable, and environmentally friendly structures with minimal
resource consumption. While the current model achieved high accuracy based on physical properties,
future research should incorporate chemical properties of the soil (e.g., organic matter content) to
develop an even more generalized and comprehensive prediction model. This would help account for
potential chemical interactions that may influence cement hydration and long-term block performance.
Additionally, continuous research and development in this area can further enhance the accuracy and
efficiency of such prediction models, leading to broader adoption of CSEBs in sustainable construction
projects.
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