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Abstract: This study aims to examine the effects of various aluminum alloy 

constitutive models on the behavior of concrete-filled aluminum tubular stub 

columns under axial compression. The bi-linear model with hardening, the 

Baehre model, and the Ramberg-Osgood (R-O) model, which follow the 

European standard (EC9) were analyzed and compared in terms of their ability 

to describe the stress-strain behavior of aluminum alloy tensile coupons over 

the full range, and their respective application scenarios were discussed. A 

total of 74 sets of experimental data results were collected to examine the 

effects of these three models on the ultimate load of concrete-filled aluminum 

tubular stub columns. Furthermore, a full-scale model was constructed to 

analyze the effect of the hardening exponent n in the R-O model on the load-

displacement curves. The results show that, apart from the bi-linear model 

with hardening, the other two aluminum alloy constitutive models are capable 

of accurately predicting the stress-strain behavior of aluminum alloys 

throughout the full range. The accuracy of the R-O model is significantly 

influenced by the calculation methods of n. The Baehre model is found to be 

more suitable for non-heat-treated aluminum alloys. The simulated ultimate 

load values obtained from the three constitutive models fall within a deviation 

range of ±10%, indicating their suitability for practical engineering 

applications. Among the three models, the R-O model exhibits the highest 

stability, as changes in the hardening exponent n do not affect the ultimate 

load but have a significant effect on the load-displacement curves beyond the 

ultimate load. 

Keywords: Aluminum alloy constitutive models; concrete-filled aluminum 

tubular stub columns; axial compressive capacity; finite element analysis. 

1 Introduction 

Aluminum, the second largest category of metals, is the most extensively utilized metal variety 

following steel. Owing to its low density, it serves as a lightweight metal material primarily employed 

in the industry as an aluminum alloy. Aluminum alloy materials possess the characteristics of 

lightweight, aesthetically pleasing appearance, corrosion resistance, ease of maintenance, excellent 

durability, and low life cycle cost. They have extensive applications in the construction [1], packaging, 
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electronics, and transportation sectors [2]. Among the various applications of aluminum alloys, its most 

familiar one is serving as a building decoration material, including aluminum alloy door and window 

frames, glass curtain wall support systems, and aluminum alloy exterior cladding of buildings. 

Currently, various countries including China, the United States, Australia, and Europe have 

established design specifications for aluminum alloy structures. The code for design of aluminum 

structures (GB50429-2007) [3] in China stipulates that the elastic modulus of aluminum alloys is E = 

70000 MPa (approximately 1/3 of that of ordinary steel), the Poisson's ratio is v = 0.3, and the yield 

strength of commonly used 6061-T6 series aluminum alloy tubes in construction is 240 MPa, with a 

tensile strength of 260 MPa. Aluminum alloy 6061 can achieve the strength of ordinary steel while 

exhibiting excellent corrosion resistance and low density (2700 kg/m3), which is only about one-third 

that of steel. Initially employed predominantly as a building decoration material, aluminum alloy has 

subsequently evolved into integral structural components. Aluminum alloy structures, serving as load-

bearing components, first emerged in Europe and America, encompassing aluminum alloy bridges, 

large-span roofs, grid shells, and trusses, as well as support systems for glass curtain walls. Fig. 1 

illustrates representative cases of domestic and international aluminum alloy structural engineering 

projects in recent years. 

  

(a) Raphael Sky City (Shanghai, China, 2020) (b) i360 Mobile Sightseeing Tower (Brighton, UK, 2016) 

Fig. 1.  Recent typical aluminum alloy structure projects 

In contrast to steel, the stress-strain curve of aluminum alloys lacks a distinct yield plateau and 

instead exhibits a continuous and smooth curve. The classical three-parameter Ramberg-Osgood model 

[4] (hereinafter referred to as the R-O model) has found extensive application in the mechanical analysis 

of aluminum alloy components [5-7]. However, the European standard EN 1999-1-1:2007 [8] 

(hereinafter referred to as EC9) introduces several other constitutive models in addition to the R-O 

model. Based on their types, all models can be categorized into piecewise models and continuous 

models. Furthermore, piecewise models can be subdivided into bi-linear and three-linear models, with 

further categorization possible based on the existence of a hardening stage. Continuous models can be 

categorized as the Baehre model [9] (expressed as σ=σ(ε)) and the R-O model (expressed as ε=ε(σ)) 

based on different expression forms. Previous studies [10-12] on aluminum alloy components have 

consistently emphasized the stability and buckling behavior of aluminum alloy columns, influenced by 

the lower elastic modulus of aluminum alloys. However, to counteract the propensity of aluminum alloy 

tubes to buckle, the concept of a concrete-filled steel tube can be employed, wherein the aluminum 

alloy tube is filled with concrete to fully exploit the mechanical properties of both materials. This 

combination of an aluminum alloy tube and concrete is referred to as concrete-filled aluminum alloy 

tubular (CFAT). In 2008 and 2009, Zhou and Young [13, 14] performed axial compression tests on 

rectangular and circular concrete-filled aluminum tubular (CFAT) stub columns, followed by numerical 

simulation studies [15] on circular CFAT stub columns in 2012. Zhou and Young [16, 17] proposed a 

formula for evaluating the load-bearing capacity of CFAT stub columns, which was subsequently 

validated in experiments, demonstrating the formula's high accuracy. 

Over the past 15 years, there has been a significant number of extensive experimentations and 

numerical simulations conducted on CFAT columns featuring diverse cross-sectional geometries, 

encompassing circular [14, 18-26], rectangular (including square) [13, 27-30], circular double-skin [16, 
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31, 32], and other configurations involving double-tube composites [17, 33]. Due to the poor weldability 

of aluminum alloy tubes and the reduced strength caused by welding, the traditional eccentric loading 

method of welding the column and the end plate and connecting by placing the hinge is not suitable for 

CFAT columns, and a reasonable and reliable connection device needs to be set up. Therefore, there 

are only a few reports on the research of eccentrically loaded CFAT columns [34, 35]. At present, 

researchers generally use the R-O model and its modified version [36-39] as the constitutive model of 

aluminum alloy for CFAT stub columns, mainly because the model can produce results consistent with 

the actual behavior when simulating aluminum alloy structures. Based on the experience accumulated 

in the study of aluminum alloy structures, the researchers applied it to the study of such composite 

structures. But EC9 not only defines the R-O model as the only constitutive model for aluminum alloys. 

Compared with aluminum alloy components, there is a significant difference in the contribution of 

concrete and aluminum alloy to the bearing capacity under pressure, and the interface bonding force 

between the two materials will produce a significant combination effect so that it cannot be simply 

regarded as a direct superposition of material strength. Because of the complexity of numerical analysis 

caused by the above factors, it is necessary to conduct further investigations to ascertain whether 

employing alternative classical aluminum alloy constitutive models in simulating the composite 

columns can yield outcomes that align with those obtained using the R-O model. 

To summarize, this study initiates from the practicality of aluminum alloy constitutive models and 

chooses three representative models: the bi-linear model with hardening, the Baehre model, and the R-

O model, within the EC9. For testing purposes, a total of eight longitudinal tensile coupons, each with 

a thickness of 2.5mm, were extracted from both circular and square 6061-T6 aluminum tubes. By 

utilizing the existing tensile test data for aluminum alloys, a comprehensive comparison and evaluation 

of the descriptive characteristics and accuracy of these models in describing the stress-strain 

relationship of aluminum alloys were conducted. Moreover, explicit utilization scenarios of diverse 

constitutive models were thoroughly examined. The experimental data of 74 pieces of concrete-filled 

aluminum tubular (CFAT) stub columns were collected from home and abroad and analyzed 

numerically using ABAQUS software. Although numerous studies and discussions have focused on 

concrete constitutive models for CFAT stub columns under axial compression, there remains a dearth 

of research on aluminum alloy constitutive models for these components. The research conducted by 

Wang et al. [22] demonstrated the suitability of Han's concrete model [40] in simulating CFAT axial 

compression members. Consequently, Han's concrete model was employed for simulation purposes in 

this study. Subsequently, the ultimate load obtained from three distinct aluminum alloy constitutive 

models was computed, compared, and rigorously evaluated. Furthermore, the effect of the hardening 

exponent n in the R-O model on the load-displacement curve of CFAT stub columns under axial 

compression was quantitatively assessed. These endeavors facilitate a more extensive understanding of 

the variances among distinct aluminum alloy constitutive models, thereby furnishing an expanded array 

of dependable choices for the finite element analysis and engineering design of CFAT stub columns 

under axial compression. 

2 Selection and comparison of typical constitutive models for aluminum alloys 

2.1 Characteristics and preliminary evaluation of the selected models  

Table 1 presents a comprehensive summary of the fundamental categories, indispensable 

parameters, applicable strain intervals, distinctive features, and initial assessment of the three chosen 

constitutive models examined in this investigation. 

2.2 Bi-Linear Model with Hardening 

Eq. (1) presents the expression of the bi-linear model with hardening, while Fig. 2 illustrates its 

stress-strain relationship curve. The figure demonstrates that the bi-linear model with hardening fails to 

accurately depict the seamless transition of the stress-strain curve for the aluminum alloys from the 

elastic to the plastic stage. Moreover, the model anticipates the yield strain at the nominal yield point 

in advance, restricting the definition of the stress-strain relationship within a limited range of 0.5εu to 

avoid overestimating the strength within the strain hardening range. 
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where fp is the conventional elastic limit of proportionality, εp, and εmax correspond to the strain at fp and 

fmax, E is the elastic modulus, E1 is the hardening modulus. In the absence of a more accurate assessment 

of the aforementioned parameters, the following assumed values can be used: fp = nominal value of f0.2 

(f0.2 represents the conditional yield strength corresponding to residual strain of 0.002), fmax = nominal 

value of f0.2, and εmax = 0.5εu (εu denotes the nominal value of ultimate strain), εp = f0.2/E, E1 = (fu- 

f0.2)/(0.5εu-εp). 

ε0.2(εp)

fy(fp)

 Test curve

E1

E

fu(fmax)

0.5εu(εmax) εu Strain ε

Stress σ

Piecewise linear model

 
Fig. 2.  Bi-linear model with hardening 

Table 1. Three typical selected models 

Models 
Bi-linear model with 

hardening 
Baehre model R-O model 

Type 
Piecewise model 

((     ) 

Continuous model 

((     ) 

Continuous model 

(     ) 

Parameters required 0.2f , E, u , uf  0.2f , E, u , uf  

0.2f , E (Steinhardt 

simplification)； 0.1f , E, 

0.2f (elasticity analysis)； 

0.2f , E, uf (plasticity 

analysis) 

Scope of application u0 0.5    u0 0.5    u0     

Specificities 

It cannot describe the 

nonlinear behavior of the 

σ-ε curve. 

It can describe the 

nonlinear behavior of the 

σ-ε curve. 

When the test curve is 

known, the model 

parameters can be 

determined by fitting 

experimental data or using 

empirical formulas. 

Preliminary evaluation 

A simple formula with a 

limited range of 

applications. 

A complex formula with 

a limited range of 

applications. 

A concise formula that 

subdivides various 

analytical conditions with a 

full range of applications. 

2.3 Baehre Model 

Eq. (2) presents the expression of the Baehre model, while Fig. 3 illustrates its stress-strain 

relationship curve. The elastic behavior is represented by region 1, the inelastic behavior by region 2, 

and the strain-hardening behavior by region 3. Each region exhibits distinct stress-strain relationships 

that must maintain continuity at their respective limiting points. The stress-strain relationship defined 

by the Baehre model is limited to the range of 0.5εu. Within this range, it is bounded by e0.5  (εp) to 
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separate the elastic and inelastic behavior, and by e1.5  (εe) to distinguish the inelastic behavior from 

the strain-enhanced behavior. 
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where fe is the conventional elastic limit, fmax is the tensile strength at the top point of the σ-ε curve, 

p e=0.5  , e e= /f E . 

 

Fig. 3.  Baehre model 

2.4 R-O Model 

Eq. (3) presents the expression of the R-O model, while Fig. 4 illustrates its stress-strain 

relationship curve. 

 
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where n denotes the exponent of the degree of hardening of the curve. To calculate the exponent n, it is 

necessary to know the second reference stress f0.2, and its corresponding residual strain εo,x in addition 

to the conditional yield strength f0.2. 

The selection of the second reference point (εo,x, fx) should be based on the specific strain range 

relevant to the phenomenon being investigated. For analyses focusing on the elastic deformation range, 

the stress-strain obtained using the 0.1% offset method can serve as the second reference point (refer to 

Fig. 4(a)). In this scenario, fx= f0.1, εo,x=0.001, and n can be expressed in Eq. (4). Conversely, for analyses 

involving the plastic deformation range, the tensile stress at the top of the curve σ-ε can be regarded as 

the second reference point (refer to Fig. 4(b)). In such cases, fx= fu, εo,x=εu,pl, εu,pl represent the residual 

strains corresponding to fu, and n can be expressed in Eq. (5). 
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where εu,pl= εu- fu/E, and εu,pl≈ εu since fu/E is relatively small. 
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(a) Elastic deformation range (b) Plastic deformation range 

Fig. 4.  R-O model 

Based on the equations provided above, the calculations of the value of n are complicated. Industry 

standards generally only provide E and f0.2, making the application of the above model challenging. To 

address this issue, Steinhardt [41] proposed Eq. (6) in 1971, which has been widely tested and verified 

internationally. The value of f0.1 can be determined by substituting Eq. (6) into Eq. (4). 

 0.210 MPan f   (6) 
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Fig. 5.  Effect of n on R-O curves 

Additionally, the value of n can be determined through fitting methods. It is a common engineering 

method to convert the R-O expression into a linear equation using double logarithmic coordinates and 

perform linear least squares fitting to determine its value. Wang et al. [42] proposed the utilization of 

the fast simulated annealing (FSA) algorithm to accurately determine the n value, which yields more 

stable results. Varying values of ne alter the shape of the R-O model curve. For instance, consider using 

tubes from the 6061-T6 series specified in the GB50429-2007, which have material properties, such as 

E = 70,000 MPa, and f0.2 = 240 MPa. As depicted in Fig. 5, every stress-strain curve intersects at point 

A  0.2 0.2 0.2/f E f  ， , denoted as  0.54% 240MPa， . When ne = 1, the R-O model represents linear 
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elasticity, resulting in a straight line. For ne > 1, the R-O model exhibits a continuously changing curve 

with a steeper "corner" as ne increases. This indicates higher stress before point A and lower stress after 

point A, corresponding to a lower hardening modulus. When ne → ∞, the curve represents ideal 

elasticity, characterized by a bifold line without a hardening section. 

2.5 Analysis of the Comparisons Between the Test Curves and the 3 Models' Predictions 

An initial investigation was conducted to examine the constitutive relationship and mechanical 

properties of aluminum alloys via tensile coupon tests. Coupons were extracted from aluminum alloy 

6061-T6 extruded tubes with circular or square cross-sections, each measuring 2.5mm in thickness. All 

coupons were longitudinally extracted from the aluminum alloy tubes, and their dimensions were 

processed by the specifications outlined in the GB/T 228.1−2010 [43]. The specific shape and 

dimensions are shown in Fig. 6. 

Tensile tests were performed utilizing the SUNS electronic universal testing machine. During the 

tensile deformation, strain measurements were acquired using extensometers that matched the coupon 

gauge length specifications. The loading was carried out under room temperature conditions with a 

0.2mm/min strain rate. Fig. 7 displays the fractured coupons, revealing that the majority experienced 

fractures within the gauge length. Moreover, a more prominent necking phenomenon was observed at 

the fracture surface of coupons extracted from square tubes in comparison to those obtained from 

circular tubes. 

 

Fig. 6.  Dimensions of tensile coupons 

 

Fig. 7.  Test setup and coupons after the tensile test 

Table 2 displays key mechanical parameters obtained from tensile tests on aluminum alloys. Fig. 

8 illustrates comparisons between the stress-strain curves of the experimental measurements of the 

aluminum alloy tensile coupons and three selected models. Since the comparisons encompass the full 

curve range, the n of the R-O model is considered as npl. It is evident from Table 2 that the ne of the 

tensile coupons taken from circular tubes are relatively close to npl, whereas for square tubes, except for 

S-4, there is a notable disparity between ne and npl. Therefore, the effect of the calculation methods of 

these two n values on the R-O model will be further examined in subsequent sections. Overall, among 

20 
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the three selected models, the R-O model faithfully represents the stress-strain curves of the aluminum 

alloy tensile coupons. The bi-linear model with hardening initially slightly underpredicts the test curves 

within the range of 0.5εu, but later reaches overall agreement. However, beyond the range of 0.5εu, it 

increasingly deviates from the test curves, indicating that the bi-linear model with hardening cannot 

adequately simulate situations where large strains occur in aluminum alloys. 

The Baehre model slightly overpredicts the strain-hardening behavior of aluminum alloy from the 

yield point to 0.5εu, and then gradually approaches the test curves again after 0.5εu, as shown in Fig. 8 

(e), (f), and (g). The strain hardening exponent ne values are recorded for the respective tensile coupons 

as 71.37, 59.07, and 75.67. Considering Fig. 5, this suggests that these three tensile coupons exhibit 

relatively weak strain-hardening behavior, and the prediction deviation in their strain-hardening 

behavior is significantly larger than the other seven groups. Thus, it can be concluded that the Baehre 

model is not suitable for accurately predicting the strain-hardening behavior of aluminum alloys with 

low ne values. Furthermore, based on the current predictions, the Baehre model demonstrates higher 

accuracy for predicting the stress-strain curves of aluminum alloys within ne in the range of (1, 30]. 

Further discussions will be provided in the subsequent sections. Among the three constitutive models, 

only the Baehre model and the R-O model demonstrate the capability to accurately capture the 

characteristic roundedness of the stress-strain curves observed in tensile tests conducted on aluminum 

alloys. However, it is worth noting that the R-O model displays relatively higher accuracy in this regard, 

while the bi-linear model with hardening fails to capture the roundedness. Currently, none of the three 

constitutive models mentioned can predict the subsequent descending stage after a fracture occurs in 

the tensile coupons. 

3 Discussion on the specific spplication scenarios of models 

3.1 The effects of different calculation methods for the n on the R-O model curves 

Table 2. Measured material properties obtained from tensile coupon tests 

Note: C indicates that this tensile coupon was taken from a circular tube, and S indicates that this tensile 

coupon was taken from a square tube. Here ne is calculated according to Eq. (4) as the value of n considering 

elastic range analysis, and npl is calculated according to Eq. (5) as the value of n considering plastic range analysis. 

Fig. 9 demonstrates the effects of two different calculation methods, Eq. (4) and Eq. (5), on the R-

O curves. Specimens C-3, S-1, S-2, and S-3, which have the largest differences in calculated values of 

n, are selected to illustrate this discrepancy. As shown in Fig. 8, Eq. (4) is applicable to the range of 

elastic deformation. The R-O curves obtained with the calculated values ne exhibit a higher degree of 

fit with the test curves before the yield point compared to the curves obtained with the calculated values 

npl, and they appear more complete before the yield point. However, after the yield point, the R-O curves 

using the calculated values ne significantly deviate from the test curves, and their accuracy is lower than 

that of the R-O curves using the calculated values npl. When the test curves reach εu, the stress values 

corresponding to the R-O curves using the calculated values ne are lower by 4.8%, 15.8%, 16.2%, and 

20.3% compared to those using the calculated values npl. This observation indicates that although the 

R-O model is more accurate than the bi-linear model with hardening, it relies on selecting a reasonable 

calculation method for the n. If an appropriate calculation method for the n is not selected within the 

required analysis range, the accuracy of the R-O model may also be compromised. 

Specimen 
f0.1 

(MPa) 

f0.2 

(MPa) 
fu (MPa) Es (MPa) v εu (%) ε0.2 ne npl 

C-1 242.8 246.7 268.7 71300 0.315 8.57 0.00546 43.50 43.99 

C-2 230.2 233.0 251.9 64873 0.319 6.90 0.00559 57.33 45.40 

C-3 235.4 240.6 261.7 72033 0.311 8.43 0.00534 31.72 44.51 

C-4 230.3 234.8 257.7 68390 0.326 8.21 0.00543 35.82 39.92 

Mean 234.7 238.8 260.0 69402 0.318 8.03 0.00546 40.02 43.41 

S-1 174.2 175.9 221.1 66428 0.353 10.47 0.00465 71.37 17.30 

S-2 177.9 180.0 224.1 66618 0.343 11.77 0.00470 59.07 18.60 

S-3 195.6 197.4 244.0 73342 0.345 7.64 0.00469 75.67 17.19 

S-4 218.8 221.2 236.7 62074 0.349 9.87 0.00551 63.54 57.57 

Mean 191.6 193.6 231.5 68694 0.347 9.94 0.00489 66.75 21.85 
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(a) C-1 (b) C-2 

  

(c) C-3 (d) C-4 

  

(e) S-1 (f) S-2 
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Fig. 9.  Effects of different calculation methods for n values on R-O model curves 

In section 2.5 of the comparative analysis, it can be reasonably inferred that the Baehre model 

demonstrates higher accuracy in predicting the stress-strain curve of aluminum alloys within ne in the 

range of [1, 30]. Therefore, further investigation is conducted to explore the accuracy of the Baehre 

model within this specific range. Due to the limited availability of experimental data on tensile coupons 

within this range and the proven optimal accuracy of the R-O constitutive model, the typical R-O model 

curve of the 6061-T6 series aluminum alloy tubes in Fig. 5 is considered to determine the range of ne 

values that closely match the Baehre model curve. According to the GB50429-2007, εu is taken as 0.08 

and fu as 260MPa for the 6061-T6 tubes.  

Fig. 10 illustrates that the Baehre model curve falls within the range of 8 < ne < 15, which 

corresponds to the R-O curve. For non-heat-treated aluminum alloys, the ne values range from 

approximately 8 to 15, while for general heat-treated aluminum alloys, the ne values range from 

approximately 20 to 40. Hence, it can be concluded that the Baehre model is more suitable for predicting 

the stress-strain curves of non-heat-treated aluminum alloys. 
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Fig. 10.  Discussion of the Baehre model scope of application 

4 Applicability assessment of three models for predicting the Nu of CFAT stub columns 

4.1 Selection of simulated specimens for CFAT stub columns 

The present study employs the bi-linear model with hardening, the Baehre model, and the R-O 
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model to conduct finite element simulations on CFAT stub columns under axial compression. The 

objective is to investigate the effects of these three models on the accuracy of the simulations. A total 

of 74 CFAT stub columns selected from [14, 16, 18, 19, 26, 32], are included in the analysis. The 

material parameters and geometric parameters of the CFAT stub columns are presented in Fig. 11 and 

Fig. 12 respectively. 
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Fig. 11. Material parameters of CFAT stub columns 

From Fig. 11, it is evident that the material parameters primarily consist of the elastic modulus E, 

yield strength f0.2, ultimate tensile strength fu, ultimate strain εu, strain hardening exponent n of the 

aluminum alloy, as well as the compressive strength fcu of concrete. The average elastic modulus of the 

aluminum alloy in the specimens measures 68.3 GPa, slightly below the standard value of 70 GPa. 

Aluminum alloy tubes with yield strength and ultimate tensile strength below 350 MPa constitute 95.9% 

of the total specimens, indicating a predominant focus on aluminum alloy tubes with standard strength 

levels in current research on CFAT stub columns. The average ultimate strain value for the aluminum 

alloy tubes in the specimens stands at 8.4%, signifying favorable ductility characteristics. The strain 

hardening exponent of the aluminum alloy tubes is a computed parameter. To facilitate calculations, 

this study employs Eq. (6) mentioned earlier, revealing that the strain hardening exponent n in this 

sample primarily ranges from 20 to 30. 

The specimens encompass different types of concrete, including ordinary, high-strength, and ultra-

high-strength concrete. Ordinary concrete accounts for 43.2%, while high-strength and ultra-high-

strength concrete account for 32.4% and 24.4% respectively. To address the absence of standardized 

compressive strength values in the literature, this study utilizes the GB 50010-2015 [44] and formulas 

presented by Goode and Lam [45] to convert the prism strength fc and cylinder strength of concrete to 

cube strength fcu, as demonstrated in Eq. (7) and (8). 

c 1 2 cu=f f    (7) 

c cu=0.8f f   (8) 

where α1 is the ratio of prismatic strength to cubic strength, and α2 is the brittle discount factor for high-

strength concrete, the exact values of which can be found in [44].  
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Fig. 12.  Geometric parameters of CFAT stub columns  

4.2 Modeling of simulated specimens and comparison of simulation results 

The specimens’ numerical models are established using the ABAQUS finite element software. 

Since simulation methods for such specimens are well-established, [15, 23] can be consulted for 

specifying element types, contact methods, and boundary conditions. Wang et al. [22] demonstrated 

that the constrained constitutive model proposed by Han [40] is suitable for simulating CFAT stub 

columns under axial compression. To ensure control over a single variable, the concrete constitutive 

model employed for the specimens in this study is Han’s constitutive model. For specific details, refer 

to [40]. Three typical constitutive models for aluminum alloy were selected for simulating and 

comparing the ultimate load of CFAT stub columns. Refer to [46], Eq. (9) and (10) are utilized to 

transform the nominal stress-strain model into a true stress-strain model suitable for finite element 

simulation. 

 true nom nom= 1     (9) 

 pl
nom true 0ln ln 1 /E       (10) 

where σtrue and σnom are the true stress and nominal stress of the aluminum alloy respectively, pl

ln  and 

nom are the log plastic strain and nominal strain of the aluminum alloy respectively. 

 

Fig. 13.  Comparison of experimental and FE models 

Fig. 13 shows the comparison of the experimental and FE analysis failure modes. The experimental 

specimens exhibited local buckling in the middle left and upper right, whereas the failure modes 

obtained from the three different aluminum alloy constitutive models all showed symmetrical local 

buckling only in the central region, still presenting a certain degree of discrepancy from the 

experimental failure modes. This is mainly because the finite element simulation was conducted under 

ideal conditions, whereas the axial loading in the experiment could not ensure eccentric-free loading. 

After all, all metal products are manufactured with permissible thickness deviations and the specimens 

themselves may have had initial defects. A comparison of the strain nephograms obtained using three 

Local buckling 

(b) Bi-linear model 

with hardening 

(c) Baehre model (d) R-O model (a) Test failure mode [18] 
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aluminum alloy constitutive models found that, except for the specimens using the R-O model, there 

was no significant deformation at the ends of the outer aluminum alloy tubes. However, the degree of 

deformation in the central part of the outer aluminum alloy tubes was as follows: the two-segment 

model exhibited the most significant deformation, followed by the Baehre model, with the R-O model 

showing the least deformation. 

Fig. 14 and Table 3 present a comparative analysis of the simulated ultimate load values obtained 

from three constitutive models and the corresponding experimental ultimate load values. The 

comparison reveals that the deviation in the simulated ultimate load values from the three constitutive 

models generally falls within a ±10% range. Both the Baehre model and the R-O model exhibit similar 

levels of simulation accuracy. However, the R-O model demonstrates greater stability in numerical 

simulations and lower variability compared to the Baehre model. Among the three constitutive models, 

the bi-linear model with hardening exhibits the poorest simulation accuracy and highest variability. 

Notably, extreme values may arise in the simulated values for large compressive strains in columns. 

Nevertheless, considering that the compressive strain limit state of columns in practical engineering 

scenarios does not reach such extreme experimental values, this model is still worth considering. Table 

3 indicates that only the simulated values obtained using the Baehre model exhibit slight conservatism. 

The average ratio of simulated values to experimental values is 0.998, with a coefficient of variation 

(COV) of 0.090. For the R-O model and bi-linear model with hardening, the average ratios of simulated 

values to experimental values are 1.009 and 1.040 respectively, with COV of 0.079 and 0.114. Thus, 

the simulated values obtained from these three constitutive models fall within an acceptable range for 

practical engineering applications. 
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Fig. 14. Comparison of ultimate loads between measurements and numerical analysis 

Table 3. Comparison of ultimate loads from simulation and test 

Models Nuf/ Nue Mean COV 

Bi-linear model with hardening 0.823~1.439 1.040 0.114 

Baehre model 0.847~1.369 0.998 0.090 

R-O model 0.853~1.265 1.009 0.079 

4.3 The effects of ne values on the N-△ curves of CFAT stub columns 

As mentioned in Section 3.1, the choice of different methods for calculating the value of n 

significantly affects the stress-strain curve of the R-O model. It is necessary to further discuss whether 

this effect will affect the load-displacement curve of the CFAT axial compression stub column model 

simulated using the R-O model. Additionally, Fig. 12 demonstrates that all current experimental designs 

involve scaled specimens. Once the optimal R-O constitutive model is determined, this study refers to 

GB 50936-2014 [47] to establish the dimensions of the full-scale finite element model, using the 

following basic parameters: D=500mm, t=12mm, H=1500mm; fcu=50MPa, f0.2=240MPa. Varying 
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values of n are taken as 8, 24, 40, and 100. 

Fig. 15(a) displays the R-O model curves for aluminum alloys with varying ne values, while Fig. 

15(b) illustrates the load-displacement curves of the CFAT axial compression stub columns with 

different ne values. Assuming a synergistic behavior between the aluminum alloy tube and concrete 

under axial compressive loads, the strain of the aluminum tube at approximately 80 mm displacement 

of the CFAT stub column aligns with the dashed line in Fig. 9(a). This strain corresponds to four stress 

values, relative to the stress at ne=100 during that instance. The stress values for ne=8/24/40 exhibit 

increases of 43.7%, 10.2%, and 5.3% respectively. Likewise, at an 80mm displacement of the CFAT 

stub column, the load-displacement behavior, referring to the load at ne=100, exhibits a corresponding 

pattern. The loads for ne=8/24/40 demonstrate increases of 42.0%, 10.6%, and 4.8% respectively. This 

suggests that the substantial influence of various ne values on the stress-strain curves of the R-O model 

can be transferred to the load-displacement curves of the CFAT axial compression stub column 

simulated with this model. The primary effect occurs after reaching the ultimate load but has minimal 

effect on the ultimate load itself. 
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Fig. 15. Effects of strain hardening exponent 

5 Conclusions 

This paper explores three typical constitutive models for aluminum alloys and their capabilities in 

predicting stress-strain curves of tensile coupons, as well as their application scenarios. Moreover, the 

predictive effects and influential factors of these three models on the axial compressive load capacity 

of CFAT stub columns are studied. The following conclusions can be drawn: 

(1) Only the R-O and Baehre models can accurately predict the full range of ultimate strain (εu). 

The bi-linear model with hardening is accurate only up to 0.5εu. The R-O model is the most accurate 

and can reliably represent the rounded stress-strain response typical of aluminum alloys, outperforming 

the Baehre model. In addition, since the typical aluminum alloy constitutive curves in this paper do not 

take fracture strain into account, they cannot predict the decline stage. 

(2) The R-O model is found to be the most accurate and adaptable, with its curve shape adjusting 

to changes in the hardening exponent (n). There are various methods to calculate n, and the choice 

should be application-specific. The R-O model's accuracy heavily depends on the right n choice, with 

Steinhardt's formula being the simplest for this purpose. 

(3) The Baehre model tends to overestimate the behavior in the strain-hardening phase, especially 

for alloys with limited strain-hardening capacity. As a result, it often produces fuller curves compared 

to the R-O model. The article suggests that the Baehre model's curve fits within the range of 8 < ne < 

15 relative to the R-O curve, making it more suitable for predicting the stress-strain curves of unheated-

treated aluminum alloys. 
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(4) For simulating the ultimate loads of CFAT stub columns under axial compression, the R-O 

model provides the most stable results, while the Baehre model is more conservative, and the bi-linear 

model with hardening is more prone to extreme values. For practical engineering, the simpler bi-linear 

model with hardening is recommended. When high accuracy is needed and stress-strain data from 

tensile tests are available, the R-O model is preferred. 

(5) The effect of hardening exponent n on the R-O model affects the load-displacement curve of 

axially compressed CFAT stub columns, primarily influencing the descending stage after reaching the 

ultimate load but not affecting the ultimate load itself. 
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