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Abstract: The utilization of regression models for the prediction of 

construction material properties is well-established, yet their performance 

when applied to small datasets is still unclear. This study investigates the 

performance of different regression models combined with various data 

preprocessing techniques in contexts where data is limited. Specifically, the 

research focuses on evaluating the suitability of five regression models across 

nine different data processing scenarios using concrete with recycled copper 

tailing as a case study. This study aims to determine which combinations of 

regression models and preprocessing methods yield the most accurate 

predictions in small data regimes. This research is motivated by the necessity 

to enhance prediction reliability in the field of construction materials, where 

experimental data can often be scarce or costly to obtain. Within the study 

context, a dataset comprising 21 experimental specimens is used to evaluate 

the performance of the models on various concrete properties, including fresh 

density, compressive strength, flexural strength, pull-off strength, abrasion 

resistance, water penetration, rapid chloride ion permeability, and air 

permeability. Through rigorous evaluation involving a 10-fold cross-

validation process to verify accuracy, the research demonstrates that selecting 

the optimal regression model and data preprocessing technique selection 

substantially improves prediction outcomes, even with limited data. The 

findings highlight the importance of this research, suggesting that even small 

datasets, when handled correctly, can provide robust insights. 

Keywords: Regression models; small data regimes; copper tailing concrete; 

multivariable regression; data preprocessing 

1 Introduction 

The introduction of regression models into the field of construction materials has significantly 

advanced the predictive capabilities concerning the properties of various materials [1-4]. Historically, 

the application of these models has been extensively explored and refined, especially with conventional 

datasets of considerable size [5-9]. However, the robustness of these models in scenarios where data is 

scarce remains a significant challenge. Existing literature on regression-based modeling of construction 

material properties primarily explored the capabilities and effectiveness of machine learning algorithms 

[10-15]. They often demonstrated the application of regression models across various scenarios without 

specifically addressing the influence of dataset size. Researchers like Steyerberg et al. [16], Habib et al. 

[17], and Koya et al. [18] investigated the technical performance and refinement of these models and 
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showed their potential to accurately predict outcomes based on the features and relationships within the 

datasets used. However, these discussions generally do not differentiate the performance impacts related 

to the size of the dataset, leaving a gap in understanding how these models perform with smaller, less 

comprehensive datasets. Previous studies have discussed various methods for expanding small datasets, 

such as data augmentation [19-21] and synthetic data generation [22-24]. Nevertheless, their use 

induces a new degree of uncertainty, which is generally unfavorable [25, 26]. On the other hand, given 

the cost and limitations in obtaining experimental data, there is a need for research on the applicability 

and reliability of regression models when the experimental data availability is limited. Accordingly, 

this study aims to answer the following questions: How well do various regression models perform in 

small data regimes?  

Recently, the use of copper tailings in concrete has attracted attention as part of the industry's aim 

to contribute to recycling solid wastes [27-31]. Copper tailings are a by-product of copper mining. They 

can be recycled as a substitute for traditional sand or as an additive in concrete [32-34]. Studies have 

shown varied results in terms of strength and durability when copper tailings are used [35-39]. In this 

regard, the use of copper tailings has been proven experimentally to affect the concrete properties at 

low replacement ratios while also presenting challenges depending on their amount [40-43]. On the 

other hand, the literature highlights a significant gap regarding the development of regression models 

for estimating the properties of concrete mixtures that incorporate copper tailings. This study is set apart 

by addressing several key aspects that are underexplored in existing research. Firstly, it evaluates the 

impact of regression model selection in small data regimes with multicollinearity (as typically expected 

in recycled aggregated concrete datasets) on the estimation performance. Secondly, it explores the 

combination of various data preprocessing techniques with regression models to enhance the 

predictability of concrete properties with limited data availability. Thirdly, this research focuses on 

copper recycled concrete and develops models for predicting a variety of mechanical and durability 

properties where the literature lacks a similar one. Within the study context, the investigations seek to 

identify the optimal combinations of models and techniques that enhance prediction accuracy in small 

data scenarios, focusing on a range of concrete properties such as strength, durability, and permeability. 

The use of a small dataset of 21 experimental specimens for this investigation provides a challenging 

yet realistic case. This research is crucial for advancing the field of construction materials, particularly 

in developing estimation models where experimental data may be limited or expensive to obtain. 

 

Fig. 1. Correlation analysis between the inputs and the outputs. 



Habib et al., SUST, 2024, 4(3): 000056 

000056-3 

 

2 Materials and Method 

2.1 Investigated Parameters and Developed Database 

This study explores the effectiveness of employing regression models alongside various data 

preprocessing techniques to estimate the properties of concrete that incorporate recycled copper tailings 

using a small dataset. Specifically, the experimental results from Thomas et al. [27] were collected and 

used as the basis for the numerical analyses. The dataset includes 21 distinct mixtures, each tested for 

eight different properties, such as strength and durability. The descriptive statistics for the selected data 

are detailed in 错误!未找到引用源。. Additionally, a correlation analysis between the input variables 

and the outputs is depicted in Fig. 1. In general, the concrete experimental results used herein were all 

tested at 28 days except for the fresh concrete density. The specimen shapes and sizes utilized in the 

reference study for the compressive strength test is a cube of 100×100×100 mm, the pull-off and flexural 

strength test is a beam of 100×100×500 mm, the abrasion test is a cube of 100×100×100 mm, the water 

permeability test is a cube of 100×100×100 mm, the rapid chloride permeability test is a cylinder of 

102 mm diameter and 51 mm in height, and air permeability is a cube of 150×150×150 mm. All the 

details regarding the experimental program, the data measurement procedure, and the findings are 

provided in detail in the reference study by Thomas et al. [27].  

Table 1. Descriptive statistics for the dataset used in this study 

  
Number of 

Observations 
Mean 

Standard 

Deviation  
Minimum 

First 

Quartile 
Median 

Third 

Quartile 
Maximum 

Cement (kg/m3) 21 393.44 14.71 380.00 380.00 387.00 413.33 413.33 

Water (kg/m3) 21 176.93 16.12 154.80 154.80 186.00 190.00 190.00 

Coarse Aggregate 

(kg/m3) 
21 1159.59 30.03 1133.43 1133.43 1144.84 1200.51 1200.51 

Fine Aggregate 

(kg/m3) 
21 452.39 116.45 272.02 353.41 454.10 555.88 640.75 

Copper Tailing 

(kg/m3) 
21 202.24 142.80 0.00 65.40 194.67 333.79 432.02 

Admixture (kg/m3) 21 0.60 0.42 0.00 0.25 0.57 0.95 1.20 

Fresh Concrete 

Density (kg/m3) 
21 2296.13 47.36 2199.96 2268.73 2294.85 2319.81 2384.95 

Compressive Strength 

(MPa) 
21 35.94 2.98 30.98 34.18 36.15 38.61 41.07 

Flexural Strength 

(MPa) 
21 4.47 0.22 4.10 4.32 4.53 4.65 4.93 

Pull-off Strength 

(MPa) 
21 2.07 0.22 1.74 1.88 2.05 2.17 2.50 

Depth of Abrasion 

(mm) 
21 1.42 0.22 1.11 1.24 1.39 1.53 1.96 

Depth of Water 

Penetration (mm) 
21 6.20 0.92 4.57 5.51 6.50 7.03 7.35 

Charge Passed in 

Coulombs 
21 535.07 58.73 431.51 498.63 533.15 586.85 648.22 

Air Permeability 

Index (Bar/min) 
21 0.19 0.03 0.13 0.16 0.18 0.22 0.25 

2.2 Regression Models 

Multivariate linear regression models are crucial in data analysis and predictive modeling. 

Common regression techniques include multiple linear regression, ridge regression, lasso regression, 

ElasticNet regression, and Bayesian ridge regression. Each of these techniques has its unique 

characteristics, robustness, and practical utility. The rationale for selecting these specific cases 

compared to advanced machine learning models comes from the need to maintain simplicity and 

robustness in the face of a small dataset. The primary goal herein is to avoid complex models with 

numerous hyperparameters and coefficients, which can compromise the robustness of the training 

process given the limited data. Linear regression variants were chosen for their straightforward nature 

and their ability to improve training scenarios and core assumptions while using the simplicity of their 

base model. Additionally, to account for potential nonlinearity, the study incorporated data 
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preprocessing techniques based on polynomials and other nonlinear forms, addressing nonlinearity 

indirectly without resorting to more complex models. This approach ensures a balanced and 

methodologically sound analysis, focusing on enhancing prediction reliability within the constraints of 

a small dataset.  

Multiple linear regression (MLR) provides a core methodology for correlating a single dependent 

variable with several independent variables. This model is especially important in interdisciplinary 

studies where the interdependence among variables is significant. Tranmer and Elliot [44] highlight its 

applicability, which is mathematically expressed in (1. 

𝑌 = 𝛽𝑋 + 𝜀 (1) 

where 𝑌 = [𝑦1, … , 𝑦𝑛]𝑇 is the output; 𝑋 = [

𝑥1,1 … 𝑥1,𝑘

⋮ ⋱ ⋮
𝑥𝑛,𝑘 … 𝑥𝑛,𝑘

] is the input matrix for 𝑛 observations 

and 𝑘  inputs;  𝛽 = [𝛽1, … , 𝛽𝑘]𝑇  represents the coefficients to be estimated; 𝜀 = [𝜀1, … , 𝜀𝑘]𝑇 

represents the random errors. 

The ordinary least squares estimator, in this case, is given in (2). 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌  (2) 

Ridge Regression modifies MLR by incorporating a regularization term into the loss function, 

aiming to control model complexity. As McDonald [45] points out, this strategy is effective in tackling 

multicollinearity and improving predictive precision by contracting the regression coefficients. This 

adaptation is crucial when independent variables exhibit correlation, with β coefficients modified 

accordingly, as shown in (3).  

�̂�∗ = (𝑋𝑇𝑋 + 𝛼𝐼𝑝)
−1

𝑋𝑇𝑌    (3) 

where �̂�∗  is the ridge estimator; 𝛼 > 0 is the complexity parameter that controls the amount of 

shrinkage and ensure that 𝐸[(�̂�∗ − 𝛽)𝑇(�̂�∗ − 𝛽)] < 𝐸[(�̂� − 𝛽)𝑇(�̂� − 𝛽)]; 𝐼𝑝 is the identity matrix.  

The ridge regression also solve issues inherent in ordinary least squares by penalizing coefficient 

magnitude to optimize a penalized residual sum squared through the ℓ2 regularization norm as follows: 

min
𝛽

= ‖𝛽𝑋 − 𝑦‖2
2 + 𝛼‖𝛽‖2

2   
(4) 

Expanding on ridge regression, lasso regression introduces an ability to reduce certain coefficients 

to zero, thereby streamlining variable selection, as described by Ranstam and Cook [46]. This feature 

is exceptionally useful in scenarios involving high-dimensional datasets, where it simplifies the model 

to avert overfitting and enhance interpretability. The optimization criterion involves minimizing the 

least-squares penalty augmented by 𝛼‖𝛽‖1, where 𝛼 is a fixed scalar and ‖𝛽‖1 is the absolute norm 

ℓ1 of the coefficient vector. 

min
𝛽

=
1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

‖𝛽𝑋 − 𝑦‖2
2 + 𝛼‖𝛽‖1   

(5) 

ElasticNet Regression considers the penalties of both ridge and lasso regression into a unified 

penalty framework. This amalgamation captures the strengths of each approach, facilitating a balance 

between variable selection and the correction of multicollinearity. It is particularly effective in datasets 

where predictor correlations are high or when predictors outnumber observations, addressing the 

constraints of applying lasso or ridge regression singly. The objective function herein can be defined as 

follows: 

min
𝛽

=
1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

‖𝛽𝑋 − 𝑦‖2
2 + 𝛼𝜌‖𝛽‖1 +

𝛼(1 − 𝜌)

2
‖𝛽‖2

2   (6) 

where 𝜌 is a parameter that is utilized to control the convex combination of ℓ1 and ℓ2. 

Bayesian Ridge Regression adopts a probabilistic approach by imposing a prior distribution on the 

coefficients, (7), as elaborated by Zhao et al. [47]. This Bayesian framework enables coefficient 

estimation under conditions of uncertainty, proving invaluable in cases affected by time lags or irregular 

data signals. 



Habib et al., SUST, 2024, 4(3): 000056 

000056-5 

 

𝑃(𝛽, Σ𝜀|𝑌, 𝑋) ∝  𝑃(𝑌|𝑋, 𝛽, Σ𝜀)𝑃(𝛽, Σ𝜀) (7) 

Bedoui and Lazar [48] utilized this model by integrating an empirical Bayesian approach with a 

ridge penalty as follows: 

min (‖𝛽𝑋 − 𝑌‖2
2

+ 𝛼‖𝛽‖2
2

) (8) 

2.3 Data Preprocessing Models 

Nowadays, a variety of data preprocessing techniques are available to enhance both the predictive 

accuracy and interpretability of regression models. This section explores several widely employed 

methods, including standardization, normalization, discretization, polynomial feature transformation, 

principal component analysis (PCA), kernel PCA, backward elimination, and forward selection. Each 

method provides distinct benefits and is suited for specific scenarios within data analysis. 

Standardization adjusts data to have a mean of zero and a standard deviation of one. The 

standardization formula is as follows: 

𝑍 =
𝑥 − 𝜇

𝜎
 (9) 

where 𝑍 is the standardized value; 𝑥 is the original value; 𝜇 is the mean; 𝜎 is the standard 

deviation. This approach is particularly advantageous when data features differ in units or scale, as it 

mitigates these discrepancies and facilitates the optimal performance of algorithms that presume 

normally distributed data, such as logistic regression and support vector machines. Standardization aims 

to enhance model training by aligning features to a uniform scale, addressing the issue of 

multicollinearity, which is often present in small datasets and can hinder model performance. 

Normalization modifies the data dimensions to ensure the range is between 0 and 1, scaling data 

based on the minimum and maximum values of the features. The formula generally used for 

normalization is as follows: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (10) 

where 𝑥′ is the normalized value; 𝑥  is the original value; min(𝑥)  is the minimum value; 

max(𝑥) is the maximum value. This technique is useful for models sensitive to data magnitude, 

including neural networks and k-nearest neighbors. Normalization ensures that each feature contributes 

proportionately to the final prediction, preventing any single feature from dominating due to its larger 

range. This is particularly important in small datasets where the presence of outliers or extreme values 

can disproportionately influence model outcomes. 

Discretization converts continuous variables into discrete ones by establishing a series of 

contiguous intervals within the variables' range. This technique is valuable for transforming numerical 

data into categorical variables, aiding in the modeling of complex relationships between variables, and 

enhancing model interpretability and robustness. In small datasets, discretization can help simplify the 

model and reduce the risk of overfitting by limiting the number of unique values a variable can take. 

Polynomial feature transformation generates features derived from existing variables, which are 

either powers or interaction terms of the original set. This method is particularly useful when a nonlinear 

relationship between predictors and the outcome is anticipated. For example, given a feature 𝑥 , 

polynomial features could include 𝑥2 and 𝑥3. By incorporating squared, cubic terms, and interaction 

terms into the dataset, models can identify more intricate patterns, potentially boosting accuracy. 

However, this increase in complexity heightens the risk of overfitting, necessitating management 

through techniques like regularization. For small datasets, careful application of polynomial 

transformations can help uncover hidden relationships without overly complicating the model. 

Principal component analysis (PCA) reduces dimensionality by transforming a large set of 

variables into a smaller one while retaining most of the original information. The transformation is 

achieved through the following formula: 

𝑍 = 𝑋𝑊 (11) 
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where 𝑍 is the matrix of principal components; 𝑋 is the matrix of original variables; 𝑊 is the 

matrix of eigenvectors. PCA uses models, enhances performance, and reduces the risk of overfitting by 

ensuring that the first principal component exhibits the highest variance, with each subsequent 

component having the maximum variance possible under orthogonality constraints with the preceding 

components. PCA is extensively utilized in exploratory data analysis and in enhancing the efficiency of 

predictive models. It can be used in small datasets where dimensionality reduction can simplify the 

model and improve generalization. 

Kernel PCA extends traditional PCA by incorporating techniques from kernel methods to facilitate 

nonlinear dimensionality reduction. The kernel PCA transformation can be expressed as follows: 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑖) (12) 

where 𝐾  is the kernel function; 𝜙  is the mapping function. By applying a nonlinear kernel 

function to the data and then conducting linear PCA on the transformed data, kernel PCA is adept at 

uncovering structures in data that are not linearly separable, thus providing superior input features for 

machine learning models. This is particularly beneficial in small datasets where capturing complex, 

nonlinear relationships can significantly enhance model performance. 

Backward elimination is a feature selection strategy used in model development that starts with all 

predictors and progressively removes the least significant predictor until the optimal predictor set is 

determined. This method emphasizes model simplification without compromising predictive accuracy 

and is particularly effective when handling multiple collinear variables, aiming to enhance model 

interpretability by eliminating redundant predictors. In small datasets, backward elimination helps in 

reducing the risk of overfitting by selecting the most relevant features. 

In contrast, forward selection begins with no variables in the model and keeps adding the most 

significant predictor at each step until a new variable does not significantly improve model performance. 

This technique is advantageous when dealing with numerous predictors, making it computationally 

impractical to fit models with all possible combinations. Forward selection offers a practical approach 

to identifying an appropriate subset of features, balancing model performance and complexity, which 

is critical in small datasets where overfitting is a common concern. 

In summary, each data preprocessing technique employed in this study addresses specific 

challenges associated with small datasets, such as multicollinearity, overfitting, and disproportionate 

influence of outliers. This study aims to enhance the performance and robustness of regression models 

in predicting concrete properties with limited data availability by carefully selecting and applying these 

techniques. 

2.4 Model Development and Performance Assessment Strategy 

This study implemented a comprehensive methodology to develop and refine predictive models 

through a robust, data-driven approach. In general, the regression model selection and evaluation 

process started with the input dataset containing pairs of features and target values. This dataset was 

split into an 80% training set and a 20% testing set. Thereafter, the preprocessing methods and 

regression models were then defined. For each preprocessing method, the training and testing sets were 

transformed accordingly. Each regression model was initialized with default parameters, and a grid 

search with cross-validation was utilized to tune the model’s hyperparameters. The best parameters 

were identified by minimizing the error between the predicted and measured values. The model with 

the optimized parameters was then trained on the preprocessed training set. Predictions were made on 

both the training and testing sets using the optimized model. Performance metrics such as the coefficient 

of correlation (R), normalized root mean squared error (NRMSE), and normalized mean absolute error 

(NMAE) were computed to evaluate the model's performance. The results, including performance 

metrics, optimized parameters, and model outputs, are saved. This process was repeated for all 

combinations of models and preprocessing methods to determine the best-performing model-

preprocessing pair. Fig. 2 illustrates the pseudo-code developed in this study, where the scikit-learn 

library was utilized to introduce the data preprocessing techniques and the regression models. On the 

other hand, it is worth noting that, unlike advanced machine learning models, the selected data 
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preprocessing techniques and regression models are simple in nature, robust in terms of training time, 

and low in computational complexity, which makes them suitable for fast handling by researchers as 

well as practitioners in resource-constrained environments. 

3 Results and Discussions 

This section provides a detailed analysis to illustrate the critical importance of model and 

preprocessing technique selection in small data regimes. In this regard, it reports the performance of 

each of the developed models with respect to the investigated copper tailing concrete properties.  

Input: Dataset 𝐷 = {(𝑋𝑖 , 𝑦𝑖)}, where 𝑋𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ ℝ, 𝑖 =  1 to 𝑁 

Split: Training dataset (80%) 𝐷𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝑋𝑇𝑟𝑎𝑖𝑛,𝑖, 𝑦𝑇𝑟𝑎𝑖𝑛,𝑖)}  and Testing dataset (20%)  𝐷𝑇𝑒𝑠𝑡𝑖𝑛𝑔  =

 {(𝑋𝑇𝑒𝑠𝑡,𝑖 , 𝑦𝑇𝑒𝑠𝑡,𝑖)} 

Initialize: Define preprocessing methods 𝑃 and regression models 𝑀 

P = {Original, Standardized, Normalized, Discretized, Polynomial Features, PCA, Kernel PCA, Back Elimination, 

Forward Selection} 

      M = {MLR, Ridge, Lasso, ElasticNet, Bayesian Ridge} 

For each preprocessing method 𝑝 ∈  𝑃 do: 

    Apply 𝑝 to obtain 𝑋𝑇𝑟𝑎𝑖𝑛−𝑝 and 𝑋𝑇𝑒𝑠𝑡−𝑝 from 𝑋𝑇𝑟𝑎𝑖𝑛 and 𝑋𝑇𝑒𝑠𝑡 

    For each model 𝑚 ∈  𝑀 do: 

        Initialize 𝑚 with default parameters 

        Define grid parameters range for hyperparameter tuning 

        Set grid search CV with parameters 𝜃𝑚, loss function 𝐿, on (𝑋𝑇𝑟𝑎𝑖𝑛−𝑝, 𝑦𝑇𝑟𝑎𝑖𝑛) 

        # Train model and find best parameters 

        𝜃𝐵𝑒𝑠𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛𝜃  𝐿(𝑚(𝑋𝑇𝑟𝑎𝑖𝑛−𝑝, 𝜃), 𝑦𝑇𝑟𝑎𝑖𝑛)    

        # Evaluate model with best found parameters 

         𝑚𝐵𝑒𝑠𝑡= 𝑚 trained with  𝜃𝐵𝑒𝑠𝑡 

        𝑦𝑇𝑟𝑎𝑖𝑛−𝑃𝑟𝑒𝑑 = 𝑚𝐵𝑒𝑠𝑡(𝑋𝑇𝑟𝑎𝑖𝑛−𝑝) 

        𝑦𝑇𝑒𝑠𝑡−𝑃𝑟𝑒𝑑 = 𝑚𝐵𝑒𝑠𝑡(𝑋𝑇𝑒𝑠𝑡−𝑝) 

        # Compute performance metrics 

         𝑅 = 1 −
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2−(∑ 𝑥)2][𝑛 ∑ 𝑦2−(∑ 𝑦)2]
 

𝑁𝑅𝑀𝑆𝐸 = √
1

(𝑦𝑡𝑟𝑢𝑒
𝑚𝑎𝑥 − 𝑦𝑡𝑟𝑢𝑒

𝑚𝑖𝑛) ∙ 𝑁
∑(𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2
𝑁

𝑖=1

 

𝑁𝑀𝐴𝐸 =
1

(𝑦𝑡𝑟𝑢𝑒
𝑚𝑎𝑥 − 𝑦𝑡𝑟𝑢𝑒

𝑚𝑖𝑛 ) ∙ 𝑁
∑|𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖|

𝑁

𝑖=1

 

      Output: Save performance metrics, model-optimized parameters, and model outputs 

Repeat until all models and preprocessing combinations are evaluated 

Fig. 2.  A summary of the Python code used for developing the regression models in this study. 

3.1 Fresh Mixture Density 
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The performance analysis of regression models combined with various preprocessing techniques 

on the prediction of fresh mixture density of concrete with recycled copper tailings is shown in Fig. 3. 

In general, all regression models, irrespective of the preprocessing technique, achieved very high R 

values ranging from 0.96 to 1.00 during both the training and testing phases for the original data format. 

On the other hand, the NRMSE and NMAE values ranged from 0 to 0.13 and 0 to 0.12, respectively, 

showing acceptable results. This suggests an almost good agreement between the measured and 

estimated values. The influence of preprocessing on model performance was significant in certain cases. 

Standardization and normalization generally showed a slight deterioration in metrics such as R, NRMSE, 

and NMAE for models like Ridge and ElasticNet, particularly in the testing phase, where a slight drop 

was observed compared to the other cases.  

 
Fig. 3.  Performance assessment and optimized parameters for the models developed to predict the density of 

fresh concrete containing copper tailing. 

This suggests that while these techniques often help in improving model generalization, they may 

not always be necessary or effective for all types of data or models. In contrast, the application of kernel 

PCA before applying the Bayesian Ridge model emerged as the most effective combination, 

maintaining an R-value of 1.00 with the lowest error metrics in both the training and testing phases. 

This indicates that for complex datasets, even when small in size, advanced preprocessing techniques 

combined with non-traditional linear regression models can enhance predictive performance 

considerably. The worst preprocessing cases were observed in the discretized case, where almost all 

regression models yielded bad performance. Despite the limited size of the dataset, the robust cross-
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validation scheme (10 folds) and the data division (80% training and 20% testing) ensured that the 

models were tested against unforeseen data effectively. The consistently high performance across most 

models and scenarios confirms the capability of the regression techniques to handle small datasets 

without overfitting. This is crucial for practical applications in construction material testing, where 

obtaining large datasets can be challenging or expensive. 

3.2 Compressive Strength 

The evaluation of regression models and preprocessing techniques in predicting the compressive 

strength of concrete containing copper tailings is provided in Fig. 4. The performance of models herein 

varied significantly depending on the data preprocessing applied. The models showed R values between 

0.41 and 1.00 during training, with testing phases exhibiting a range of -0.73 to 0.94. The ranges of 

NRMSE and NMAE values are 0.01 to 0.6 and 0.00 to 0.53, respectively, across different preprocessing 

techniques except for a case where the error was almost 4, which indicates unstable model results. This 

highlights a broader variation in model performance compared to the fresh mixture density case.  

 
Fig. 4.  Performance assessment and optimized parameters for the models developed to predict the 

compressive strength of concrete containing copper tailing. 

The preprocessing techniques had a notable impact on the performance metrics. Standardization, 

for instance, generally resulted in a significant degradation in R, NRMSE, and NMAE for models like 

the MLR, particularly evident during the testing phase, where performance dropped substantially. This 
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suggests that while standardization can aid in model generalization, it might not be uniformly beneficial 

across all data types or scenarios, possibly due to the sensitivity of compressive strength to changes in 

scale or distribution of input variables. Conversely, the use of kernel PCA with Ridge regression 

emerged as the best preprocessing-model combination, achieving the highest overall performance in 

both the training and testing phases. This combination's success highlights the utility of dimensionality 

reduction techniques in enhancing model performance, especially in contexts involving small datasets 

where conventional models might struggle with feature overfitting or underrepresentation. Such results 

underline the complexities of modeling compressive strength in cases with small data. Despite the 

challenges posed by the limited dataset size, the robustness of the cross-validation process (10 folds) 

and the data splitting strategy (80% training, 20% testing) ensured effective validation of the models 

against unseen data. The variation in performance across different models and preprocessing techniques 

underscores the necessity of careful selection of both the model and the preprocessing method to 

optimize prediction accuracy in small data regimes. 

 
Fig. 5.  Performance assessment and optimized parameters for the models developed to predict the flexural 

strength of concrete containing copper tailing. 

3.3 Flexural Strength 

The performance of models in predicting the flexural strength of concrete containing copper tailing 

is illustrated in Fig. 5. This property proved challenging, with generally lower accuracy levels observed 

across different preprocessing techniques. However, the application of kernel PCA preprocessing 
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improved model performance, especially when coupled with an ℓ1 regularized case such as the lasso 

and ElasticNet models, highlighting its effectiveness in dealing with complex property predictions. 

These two cases were selected as the best ones because they have the highest results and the closest 

training and testing metrics to each other. The best models under this configuration demonstrated 

average predictive accuracy for training and high for testing, meaning that although other properties of 

concrete were all accurately predicted, it is possible that some cases would yield an average 

performance in small datasets. The reliability and consistency of the results of both training and testing 

and the performance in predicting unseen data upon 10-fold cross-validation indicate that these models 

are practically viable for predicting flexural strength but should be used with caution given the 

considerably lower performance in the training case. On the other hand, the huge change in the 

performance of the various models highlights the importance of optimizing the model type and pre-

processing case to achieve suitable results. 

 
Fig. 6.  Performance assessment and optimized parameters for the models developed to predict the pull-off 

strength of concrete containing copper tailing. 

3.4 Pull-off Strength 

Fig. 6 demonstrates the challenges involved in predicting the pull-off strength of concrete with 

copper tailings. Among the various models and preprocessing methods, the combination of polynomial 

features preprocessing with Lasso and ElasticNet models was the most successful, significantly 

outperforming others with R values of 0.94 and 0.95 in the training and testing phases and low testing 
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errors, NRMSE and NMAE, at approximately 0.14 and 0.11, respectively. On the other hand, multiple 

models failed to converge, indicating that estimating the pull-out is a challenging task under small data 

regimes This particular combination's effectiveness in capturing complex, nonlinear relationships is 

evident from its robust performance across both training and testing phases, supported by a rigorous 

10-fold cross-validation process. Such results not only demonstrate the models' reliability in practical 

applications but also emphasize the importance of selecting advanced preprocessing techniques and 

sophisticated models to manage the complexities of predicting construction material properties, 

especially when dealing with limited data. 

 
Fig. 7.  Performance assessment and optimized parameters for the models developed to predict the depth of 

abrasion of concrete containing copper tailing. 

3.5 Abrasion Resistance 

Fig. 7 delineates the results for predicting the abrasion resistance of concrete containing copper 

tailing. The evaluation of the models across various preprocessing techniques shows a notable variance 

in performance. The polynomial features preprocessing with lasso regression demonstrated exceptional 

performance, achieving perfect accuracy in both the training and testing phases. This optimal 

combination significantly outperformed other methods, underscoring the potential of incorporating 

higher-degree polynomial transformations to capture complex interactions within the data effectively. 

The original dataset, without any preprocessing, also yielded strong results with MLR, achieving an R 

value of 0.97 in the testing phase. This suggests that the basic characteristics of the dataset are well-
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suited for regression analyses without necessitating transformations. The consistency in performance 

across both the training and testing phases, validated through a rigorous 10-fold cross-validation process, 

indicates a robust model capable of reliably predicting abrasion resistance in unseen data, even within 

a small dataset context. 

 
Fig. 8.  Performance assessment and optimized parameters for the models developed to predict the depth of 

water penetration of concrete containing copper tailing. 

3.6 Water Penetration 

Fig. 8 shows the models developed to predict water penetration depth in concrete containing copper 

tailing performed uniformly well across various preprocessing techniques. In general, the polynomial 

features preprocessing with ridge regression achieved a perfect R value of 1.00 in the testing phase and 

0.1 and 0.08 NRMSE and NMAE, respectively, marking it as the standout preprocessing-model 

combination. This high level of accuracy indicates an excellent fit of the model to the data, capable of 

capturing the intricate relationships that affect water penetration in concrete. The original and 

standardized data cases both supported high model accuracy, with MLR and Ridge models consistently 

showing R values of 0.95 or higher in the testing phase. The effective prediction across diverse 

preprocessing techniques reinforces the robustness of the regression models, ensuring reliable 

predictions of water penetration depth in practical scenarios, particularly when data availability is 

limited. 



Habib et al., SUST, 2024, 4(3): 000056 

000056-14 

 

3.7 Rapid Chloride Ion Permeability 

The results for predicting rapid chloride ion permeability are shown in Fig. 9. The models herein 

displayed generally high performance, but the polynomial features preprocessing with Bayesian ridge 

regression again emerged as the most effective, achieving an R value of 0.97, an NRMSE of 0.1, and 

NMAE of 0.07 in the testing phase. This model's ability to handle complex non-linear relationships 

within the data highlights its suitability for predicting properties related to the durability of construction 

materials. While the original dataset provided a solid baseline for model performance (R=0.89 in testing 

for MLR), the enhanced preprocessing techniques, particularly polynomial features, facilitated a 

significant improvement in model accuracy. This improvement, evidenced by the rigorous 10-fold 

cross-validation, suggests that the selected models are very capable of accurately predicting chloride 

ion permeability in new, unseen data samples. 

 
Fig. 9.  Performance assessment and optimized parameters for the models developed to predict the charge 

passed in coulombs of concrete containing copper tailing. 

3.8 Air Permeability 

Fig. 10 presents the performance assessment for predicting air permeability in concrete containing 

copper tailing. The polynomial features preprocessing, combined with ridge regression, achieved the 

highest accuracy, with an R value of 0.98, an NRMSE of 0.08, and an NMAE of 0.07 in the testing 

phase. This optimal configuration underscores the effectiveness of advanced preprocessing in 



Habib et al., SUST, 2024, 4(3): 000056 

000056-15 

 

enhancing the predictive accuracy of regression models concerning air permeability. The uniform high 

performance across the original, standardized, and normalized data setups with minimal preprocessing 

adjustments indicates that the fundamental data characteristics are well-suited for modeling using 

regression techniques. The strong performance across both training and testing phases confirms the 

models' capability to provide reliable predictions, which is crucial for practical applications where air 

permeability plays a critical role in material quality assessments. 

 
Fig. 10.  Performance assessment and optimized parameters for the models developed to predict the air 

permeability index of concrete containing copper tailing. 

4 Conclusion  

The aim of this study is to evaluate the performance of various regression models combined with 

different data preprocessing techniques in predicting the properties of concrete containing recycled 

copper tailings, particularly in scenarios where data is limited. This study addresses a significant gap in 

the literature concerning the robustness and reliability of regression models when applied to small 

datasets, which is crucial given the high cost and difficulty of obtaining experimental data in 

construction material research. Based on the aforementioned statements, the following conclusions are 

drawn: 
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(1) The performance of regression models varied significantly across different preprocessing 

techniques, emphasizing the importance of selecting appropriate preprocessing methods to enhance 

prediction accuracy in small data regimes. 

(2) The findings highlight that even small datasets, when appropriately processed and analyzed, 

can yield reliable and robust predictions, which is vital for advancing construction material research 

where data limitations are common due to practicality or cost reasons. 

(3) Overall, it is possible to develop a predictive regression model when using a small data regime, 

where most of the concrete parameters were accurately estimated in both training and testing cases and 

when 10-fold cross-validation was used. 

(4) Polynomial feature transformation and kernel PCA improved model performance across a 

variety of cases compared to other regression techniques, indicating the utility of polynomial-based data 

preprocessing techniques in capturing nonlinear relationships within the data. 

(5) Specific combinations of regression models and preprocessing techniques, such as kernel PCA 

with ridge regression for compressive strength and polynomial features with lasso regression for pull-

off strength, proved to be most effective in optimizing prediction accuracy. 

(6) The study underscored the critical role of data preprocessing in handling small datasets 

effectively. Techniques like polynomial feature transformation and kernel PCA were particularly 

beneficial in modeling complex relationships within the data. 

While the study provides significant insights, it acknowledges limitations, such as the reliance on 

a specific type of concrete and numerical models. Future research should explore a broader array of 

materials and more varied data conditions to validate and possibly enhance the generalizability of the 

findings. Moreover, they could investigate the applicability of other numerical techniques for such a 

prediction. Finally, the detailed interpretation of these results highlights how the findings can be applied 

in real-world scenarios, such as the design and quality control of concrete materials. The study 

emphasizes that with the correct preprocessing and model selection, even limited data can yield accurate 

predictions, which is essential for practical decision-making in construction material design. 

Furthermore, the observed trade-offs between model complexity and interpretability are crucial; while 

advanced preprocessing techniques like kernel PCA offer improved performance, they also introduce 

some degree of complexity. Balancing this complexity with the need for interpretable models is vital 

for practical applications, where understanding the underlying mechanisms is as important as prediction 

accuracy. 
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